Exact Solution of a Moisture Drying System with Phase Transition

  • Eva Litavcová
  • Miron Pavluš
  • Ján Seman
  • Ibrohim Sarhadov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)


An exact solution of a linear system of moisture transfer with phase transition is proposed. The system consists of three equations. The first equation is a diffusion equation for liquid moisture concentration w l , the second one is a diffusion equation for saturated vapor concentration w v . Both equations are tied with the rate I of change of moisture concentration that arises in the pores due to the evaporation or condensation. The third equation is algebraic one and describes two complementary parts of the pores volume, the part, where the liquid moisture is present and the part, where saturated vapor is present.

The system is solved by means of the variables separation method.


drying liquid moisture saturated vapor variable separation method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amirkhanov, I.V., Pavlušová, E., Pavluš, M., et al.: Numerical Modeling of Heat-and-Mass Transfer Process in a Porous Material. Preprint of the Joint Institute for Nuclear Research, Dubna, P11-2009-124, 11 (2009)Google Scholar
  2. 2.
    Glasser, H.: Wärmeleitung und Feuchtigkeitdurchgang durch Khlraumisolierungen. Kältetechnik, H.3, S. 86, (1958)Google Scholar
  3. 3.
    Korjenic, A., Bednar, T.: Developing a model for fibrous building material. Energy Buildings (2011), doi:10.1016/j.enbuild.2011.08.017Google Scholar
  4. 4.
    Lykov, A.V.: Heat and Mass Transfer, p. 623. Mir Publisher, Moscow (1980)Google Scholar
  5. 5.
    Philip, J.R., de Vries, D.A.: Moisture movement in porous materials under temperature gradient. Transactions. American Geophysical Union 38, 222 (1957)CrossRefGoogle Scholar
  6. 6.
    Pleinert, H., Sadouki, H., Wittmann, F.H.: Determination of Moisture Distribution in Porous Building Materials by neutron transmission analysis. Materials and Structures 31, 218 (1998)CrossRefGoogle Scholar
  7. 7.
    Prat, M.: Recent Advances in Pore-scale Models for Drying of Porous Media. Chemical Engineering Journal 86, 153 (2002)CrossRefGoogle Scholar
  8. 8.
    Reeves, P.C., Celia, M.A.: A Functional Relationship between Capillary Pressure, Saturation, and Interfacial Area as Revealed by a Pore-Scale Network Model. Water Resour. Res. 32(8), 2345 (1996)CrossRefGoogle Scholar
  9. 9.
    Reshetin, O.L., Orlov, S.Y.: Theory of Heat and Moisture Transfer in a Capillary Porous Body. Technical Physics 43(2), 263 (1998)CrossRefGoogle Scholar
  10. 10.
    Valckenborg, R.M.E., Pel, L., Hazrati, K., Kopinga, K., Marchand, J.: Pore Water Distribution in Mortar during Drying as Determined by NMR. Materials and Structures 34, 599 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eva Litavcová
    • 1
  • Miron Pavluš
    • 1
  • Ján Seman
    • 1
  • Ibrohim Sarhadov
    • 2
  1. 1.Department of Quantitative Methods, Faculty of ManagementUniversity of Prešov in PrešovPrešovSlovakia
  2. 2.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations