Mathematical Modeling of Irregular Integrated Optical Waveguides

  • Edik A. Ayryan
  • Alexander A. Egorov
  • Leonid A. Sevastyanov
  • Konstantin P. Lovetskiy
  • Anton L. Sevastyanov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)


The paper presents the formulation of the dispersion relations for regular planar waveguides and smoothly irregular integrated optical waveguides in forms of elementary continuous functions. The stable algorithm for computing the roots of the dispersion relations for regular and irregular waveguides, which is applicable in the case of real and complex coefficients of the phase retardation of waveguide modes, is developed. The theoretical and numerical method for studying the characteristics of inhomogeneous waveguide modes in the overcritical regimes is elaborated.

In contrast to the zero approximation of the adiabatic modes method, and moreover to the method of comparison waveguides, the fields of irregular waveguide modes of an integrated optical waveguide in the first approximation are described by a pair of equations of coupled oscillators allowing resonance solutions.


irregular integrated optical waveguide method of adiabatic modes complex-valued dispersion relatieus stable numerical algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, A.: Introduction to the theory of optical waveguides. Mir Publ., Moscow (1984) (in Russian)Google Scholar
  2. 2.
    Ayrjan, E.A., Egorov, A.A., Michuk, E.N., Sevastyanov, A.L., Sevastyanov, L.A., Stavtsev, A.V.: Representations of guided modes of integrated-optical multilayer thin-film waveguides. Preprint JINR, Dubna, E11-2011-31, 56 (2011)Google Scholar
  3. 3.
    Ayrjan, E.A., Egorov, A.A., Sevastyanov, A.L., Lovetskiy, K.P., Sevastyanov, L.A.: Zero Approximation of Vector Model for Smoothly Irregular Optical Waveguide. Preprint JINR, Dubna, E11-2009-120, 22 (2009) (in Russian)Google Scholar
  4. 4.
    Egorov, A.A., Lovetskii, K.P., Sevastyanov, A.L., Sevastyanov, L.A.: Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation. Quantum Electronic 40(9), 830–836 (2010)CrossRefGoogle Scholar
  5. 5.
    Egorov, A.A., Sevastyanov, L.A.: Structure of modes of a smoothly irregular integrated-optical four-layer three-dimensional waveguide. Quantum Electronics 39(6), 566–574 (2009)CrossRefGoogle Scholar
  6. 6.
    Egorov, A.A., Sevastyanov, A.L., Ayrjan, E.A., Lovetskiy, K.P., Sevastyanov, L.A.: Zero approximation of vector model for smoothly-irregular optical waveguide. Matematicheskoe Modelirovanie 22(8), 42–54 (2010) (in Russian)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Egorov, A.A., Sevastyanov, A.L., Lovetskiy, K.P.: Zero Approximation Model of Integrated-Optical Generalized Luneburg Lens. Bulletin of PFUR. Series Mathematics. Computer science. Physics. (3), 55–64 (2009) (in Russian) Google Scholar
  8. 8.
    Egorov, A.A., Sevastyanov, L.A., Sevastyanov, A.L.: Investigation of electrodynamic properties of a planar thin-film Luneberg lens. Journ. of Radioelectronics (6), 1–20 (2008)Google Scholar
  9. 9.
    Egorov, A.A., Sevastyanov, L.A., Sevastyanov, A.L., Lovetski, K.P.: Propagation of electromagnetic waves in thin-film structures with smoothly irregular sections. In: ICO Topical Meeting on Optoinformatics/Information Photonics, September 15–18, pp. 231–234. ITMO, St. Petersburg (2008)Google Scholar
  10. 10.
    Hunsperger, R.G.: Integrated Optics: Theory and Technology. Springer, New York (1984)CrossRefGoogle Scholar
  11. 11.
    Il’insky, A.S., Kravtsov, V.V., Sveshnikov, A.G.: Mathematical models of electrodynamics. Vysshaya schkola, Moscow (1991) (in Russian)Google Scholar
  12. 12.
    Marcuse, D.: Light Transmission Optics. Van Nostrand, New York (1972)Google Scholar
  13. 13.
    Romanenko, A.A., Sotsky, A.B.: The solution of the dispersion relations for planar waveguides in the case of complex roots. Journ. Techn. Phys. 68(4), 88–95 (1998)Google Scholar
  14. 14.
    Sevastyanov, L.A.: A complete system of modes of open planar waveguide. In: Proc. VI Internat. Sci.-Tech. Conf. “Lasers in Sci., Tech. and Med.”, pp. 72–76. IRE RAN Publ., Suzdal (1995)Google Scholar
  15. 15.
    Sevastyanov, L.A., Egorov, A.A.: Theoretical analysis of the waveguide propagation of electromagnetic waves in dielectric smoothly-irregular integrated structures. Optics and Spectroscopy 105(4), 576–584 (2008)CrossRefGoogle Scholar
  16. 16.
    Shevchenko, V.V.: On the spectral decomposition in eigenfunctions and associated functions of a nonself-adjoint Sturm-Liouville problem on the whole axis. Diff. Eqs. 15, 2004–2020 (1979)Google Scholar
  17. 17.
    Snyder, A., Love, J.: Optical Waveguide Theory. Radio Commun., Moscow (1987) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Edik A. Ayryan
    • 1
  • Alexander A. Egorov
    • 2
  • Leonid A. Sevastyanov
    • 1
    • 3
  • Konstantin P. Lovetskiy
    • 3
  • Anton L. Sevastyanov
    • 3
  1. 1.Joint Institute for Nuclear ResearchRussia
  2. 2.A.M. Prokhorov General Physics InstituteRussia
  3. 3.Peoples’ Friendship University of RussiaRussia

Personalised recommendations