Advertisement

LiMoSense – Live Monitoring in Dynamic Sensor Networks

  • Ittay Eyal
  • Idit Keidar
  • Raphael Rom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7111)

Abstract

We present LiMoSense, a fault-tolerant live monitoring algorithm for dynamic sensor networks. This is the first asynchronous robust average aggregation algorithm that performs live monitoring, i.e., it constantly obtains a timely and accurate picture of dynamically changing data. LiMoSense uses gossip to dynamically track and aggregate a large collection of ever-changing sensor reads. It overcomes message loss, node failures and recoveries, and dynamic network topology changes. We formally prove the correctness of LiMoSense; we use simulations to illustrate its ability to quickly react to changes of both the network topology and the sensor reads, and to provide accurate information.

Keywords

Sensor Network Read Average Node Failure Topology Event Dynamic Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almeida, P.S., Baquero, C., Farach-Colton, M., Jesus, P., Mosteiro, M.A.: Fault-Tolerant Aggregation: Flow-Updating Meets Mass-Distribution. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 513–527. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Asada, G., Dong, M., Lin, T., Newberg, F., Pottie, G., Kaiser, W., Marcy, H.: Wireless integrated network sensors: Low power systems on a chip. In: ESSCIRC (1998)Google Scholar
  3. 3.
    Birk, Y., Keidar, I., Liss, L., Schuster, A.: Efficient Dynamic Aggregation. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 90–104. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: design, analysis and applications. In: INFOCOM (2005)Google Scholar
  5. 5.
    Eyal, I., Keidar, I., Rom, R.: LiMoSense – live monitoring in dynamic sensor networks. Tech. Rep. CCIT 786, Technion, Israel Institute of Technology (2011)Google Scholar
  6. 6.
    Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci. 31(2) (1985)Google Scholar
  7. 7.
    Jain, N., Mahajan, P., Kit, D., Yalagandula, P., Dahlin, M., Zhang, Y.: Network imprecision: A new consistency metric for scalable monitoring. In: OSDI (2008)Google Scholar
  8. 8.
    Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Transactions on Computer Systems (TOCS) 23(3) (2005)Google Scholar
  9. 9.
    Jesus, P., Baquero, C., Almeida, P.: Fault-tolerant aggregation for dynamic networks. In: SRDS (2010)Google Scholar
  10. 10.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: FOCS (2003)Google Scholar
  11. 11.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation service for ad-hoc sensor networks. In: OSDI (2002)Google Scholar
  12. 12.
    Mosk-Aoyama, D., Shah, D.: Computing separable functions via gossip. In: PODC (2006)Google Scholar
  13. 13.
    Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust aggregation in sensor networks. In: SenSys (2004)Google Scholar
  14. 14.
    Warneke, B., Last, M., Liebowitz, B., Pister, K.: Smart dust: communicating with a cubic-millimeter computer. Computer 34(1) (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ittay Eyal
    • 1
  • Idit Keidar
    • 1
  • Raphael Rom
    • 1
  1. 1.Department of Electrical EngineeringTechnion – Israel Institute of TechnologyIsrael

Personalised recommendations