Advertisement

Local, Self-organizing Strategies for Robotic Formation Problems

  • Barbara Kempkes
  • Friedhelm Meyer auf der Heide
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7111)

Abstract

We consider a scenario with a set of autonomous mobile robots having initial positions in the plane. Their goal is to move in such a way that they eventually reach a prescribed formation. Such a formation may be a straight line between two given endpoints (Robot Chain Problem), a circle or any other geometric pattern, or just one point (Gathering Problem). In this survey, we assume that there is no central control that guides the robot’s decisions, thus the robots have to self-organize in order to accomplish global tasks like the above-mentioned formation problems. Moreover, we restrict them to simple local strategies: the robots are limited to ”see” only robots within a bounded viewing range; their decisions where to move next are solely based on the relative positions of robots within this range.

We survey recent results on local strategies for short robot chains and gathering, among them the first that come with upper and lower bounds on the number of rounds needed and the maximum distance traveled. Finally we present a continuous local strategy for short robot chains, and present a bound for the ”price of locality”: for every configuration of initial robot positions, the maximum distance traveled by the robots is at most by a logarithmic (in the number of robots) factor away from the maximum distance of the initial robot positions to the straight line.

Keywords

Mobile Robot Target Position Local Strategy Local Rule Target Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Degener, B., Kempkes, B., Kling, P., Meyer auf der Heide, F.: A Continuous, Local Strategy for Constructing a Short Chain of Mobile Robots. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 168–182. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Dynia, M., Kutylowski, J., Lorek, P., Meyer auf der Heide, F.: Maintaining Communication Between an Explorer and a Base Station. In: IFIP 19th World Computer Congress, TC10: 1st IFIP International Conference on Biologically Inspired Computing (BICC 2006), pp. 137–146 (2006)Google Scholar
  3. 3.
    Kutylowski, J., Meyer auf der Heide, F.: Optimal strategies for maintaining a chain of relays between an explorer and a base camp. Theoretical Computer Science 410(36), 3391–3405 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dynia, M., Kutylowski, J., Meyer auf der Heide, F., Schrieb, J.: Local Strategies for Maintaining a Chain of Relay Stations between an Explorer and a Base Station. In: SPAA 2007: Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 260–269. ACM Press, New York (2007)Google Scholar
  5. 5.
    Kling, P., Meyer auf der Heide, F.: Convergence of Local Communication Chain Strategies via Linear Transformations. In: SPAA 2011: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, pp. 159–166 (2011)Google Scholar
  6. 6.
    Défago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots with no common sense of orientation. In: Proceedings of the 2002 Workshop on Principles of Mobile Computing, POMC 2002, pp. 97–104 (2002)Google Scholar
  7. 7.
    Chatzigiannakis, I., Markou, M., Nikoletseas, S.: Distributed Circle Formation for Anonymous Oblivious Robots. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 159–174. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Meyer auf der Heide, F., Schneider, B.: Local Strategies for connecting stations by small robotic networks. In: IFIP 20th World Computer Congress, TC10: 2nd IFIP International Conference on Biologically Inspired Computing (BICC 2008), pp. 95–104 (2008)Google Scholar
  9. 9.
    Degener, B., Kempkes, B., Meyer auf der Heide, F.: A local O(n^2) gathering algorithm. In: SPAA 2010: Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, pp. 217–223 (2010)Google Scholar
  10. 10.
    Ando, H., Suzuki, Y., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: Proceedings of the 1995 IEEE International Symposium on Intelligent Control, ISIC 1995, pp. 453–460 (August 1995)Google Scholar
  11. 11.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoretical Computer Science 337(1-3), 147–168 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation 15(5), 818–828 (1999)CrossRefGoogle Scholar
  13. 13.
    Katreniak, B.: Convergence with Limited Visibility by Asynchronous Mobile Robots. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 125–137. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Desai, J.P., Ostrowski, J.P., Kumar, V.: Controlling Formations of Multiple Mobile Robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 1998), vol. 4, pp. 2864–2869 (1998)Google Scholar
  15. 15.
    Fahimi, F., Nataraj, C., Ashrafiuon, H.: Real-time obstacle avoidance for multiple mobile robots. Robotica 27(2), 189–198 (2009)CrossRefGoogle Scholar
  16. 16.
    Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theoretical Computer Science 410(6-7), 481–499 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas, A., Kling, P., Kurras, S., Märtens, M., Meyer auf der Heide, F., Raupach, C., Swierkot, K., Warner, D., Weddemann, C., Wonisch, D.: Collisionless Gathering of Robots with an Extent. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Oasa, Y., Suzuki, I., Yamashita, M.: A robust distributed convergence algorithm for autonomous mobile robots. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC 1997), vol. 1, pp. 287–292 (1997)Google Scholar
  19. 19.
    Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas, A., Kling, P., Kurras, S., Märtens, M., Meyer auf der Heide, F., Raupach, C., Swierkot, K., Warner, D., Weddemann, C., Wonisch, D.: A New Approach for Analyzing Convergence Algorithms for Mobile Robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Degener, B., Kempkes, B., Langner, T.: Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 139–147 (2011)Google Scholar
  21. 21.
    Brandes, P., Degener, B., Kempkes, B., Meyer auf der Heide, F.: Energy-Efficient Strategies for Building Short Chains of Mobile Robots Locally. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 138–149. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Barbara Kempkes
    • 1
  • Friedhelm Meyer auf der Heide
    • 1
  1. 1.Heinz Nixdorf Institute & Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations