Dynamic Multi-party Computation Forever for Swarm and Cloud Computing and Code Obfuscation

  • Shlomi Dolev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7111)


Intuitive and Basic Description of Secure Multi-party Computation. Secure multi-party computation [1,3] schemes allow participants to calculate a function of their inputs, such that the inputs of the participants are not revealed to each other.


Cloud Computing Turing Machine Secret Sharing Secret Share Scheme Homomorphic Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-OR, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)Google Scholar
  2. 2.
    Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults. In: FOCS, pp. 383–395 (1985)Google Scholar
  3. 3.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC, pp. 11–19 (1988)Google Scholar
  4. 4.
    Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V.: Swarming secrets. In: 47th Annual Allerton Conference on Communication, Control, and Computing (2009)Google Scholar
  5. 5.
    Dolev, S., Lahiani, L., Yung, M.: Secret Swarm Unit Reactive k-Secret Sharing. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 123–137. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V.: Secret Sharing Krohn-Rhodes: Private and Perennial Distributed Computation. In: Innovations in Computer Science (ICS) (January 2011); Also Private and Parennial Distributed Computation. In: Workshop on Cryptography and Security in Clouds (CSC) (2011)Google Scholar
  7. 7.
    Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  8. 8.
    Higgins, F., Tomlinson, A., Martin, K.: Survey on Security Challenges for Swarm Robotics. In: ICAS 2009, pp. 307–312 (2009)Google Scholar
  9. 9.
    Krohn, K.R., Rhodes, J.L.: Algebraic theory of machines (1962)Google Scholar
  10. 10.
    Krohn, K.R., Rhodes, J.L.: Algebraic theory of machines i: prime decomposition theorems for finite semigroups and machines. Transactions of the American Mathematical Society 116, 450–464 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Weiser, M.: The Computer for the 21th Century. Scientific American (September 1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shlomi Dolev
    • 1
  1. 1.Department of Computer ScienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations