Skip to main content

Tissue Microarrays for Translational Research

  • 1124 Accesses

Abstract

Advances in the identification of genes and proteins that are connected to human disease have resulted in an enormously increased need for validation studies including large sets of clinically well-defined tissue samples in order to translate basic molecular findings into clinically useful applications. The tissue microarray (TMA) technology combines hundreds of minute tissue samples on a single microscopic slide and overcomes the bottleneck of traditional large section tissue analysis. The array format facilitates linking of pathological and clinical data to the molecular results obtained from TMA studies. Consequently, tissue microarrays have become a standard tool for modern high-throughput tissue analysis. Current techniques and applications of the TMA technology in cancer research are discussed.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H et al (2004) Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 64(23):8534–8540

    Article  PubMed  CAS  Google Scholar 

  • Almanzar G, Olkhanud PB, Bodogai M, Dell’agnola C, Baatar D, Hewitt SM et al (2009) Sperm-derived SPANX-B is a clinically relevant tumor antigen that is expressed in human tumors and readily recognized by human CD4+ and CD8+ T cells. Clin Cancer Res 15(6):1954–1963

    Article  PubMed  CAS  Google Scholar 

  • Barlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML et al (2000) Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 92(15):1252–1259

    Article  PubMed  CAS  Google Scholar 

  • Battifora H (1986) The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 55(2):244–248

    PubMed  CAS  Google Scholar 

  • Britten KM, Howarth PH, Roche WR (1993) Immunohistochemistry on resin sections: a comparison of resin embedding techniques for small mucosal biopsies. Biotech Histochem 68(5):271–280

    Article  PubMed  CAS  Google Scholar 

  • Bubendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y et al (1999) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91(20):1758–1764

    Article  PubMed  CAS  Google Scholar 

  • Camp RL, Charette LA, Rimm DL (2000) Validation of tissue microarray technology in breast carcinoma. Lab Invest 80(12):1943–1949

    Article  PubMed  CAS  Google Scholar 

  • Cho EY, Han JJ, Choi YL, Kim KM, Oh YL (2008) Comparison of Her-2, EGFR and cyclin D1 in primary breast cancer and paired metastatic lymph nodes: an immunohistochemical and chromogenic in situ hybridization study. J Korean Med Sci 23(6):1053–1061

    Article  PubMed  Google Scholar 

  • Datta MW, Kajdacsy-Balla AA (2010) Tissue microarrays from biopsy specimens. Methods Mol Biol 664:103–111

    Article  PubMed  CAS  Google Scholar 

  • Datta MW, Kahler A, Macias V, Brodzeller T, Kajdacsy-Balla A (2005) A simple inexpensive method for the production of tissue microarrays from needle biopsy specimens: examples with prostate cancer. Appl Immunohistochem Mol Morphol 13(1):96–103

    Article  PubMed  Google Scholar 

  • Dicken BJ, Graham K, Hamilton SM, Andrews S, Lai R, Listgarten J et al (2006) Lymphovascular invasion is associated with poor survival in gastric cancer: an application of gene-expression and tissue array techniques. Ann Surg 243(1):64–73

    Article  PubMed  Google Scholar 

  • El Gammal AT, Bruchmann M, Zustin J, Isbarn H, Hellwinkel OJ, Kollermann J et al (2010) Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin Cancer Res 16(1):56–64

    Article  PubMed  CAS  Google Scholar 

  • Engellau J, Akerman M, Anderson H, Domanski HA, Rambech E, Alvegard TA et al (2001) Tissue microarray technique in soft tissue sarcoma: immunohistochemical Ki-67 expression in malignant fibrous histiocytoma. Appl Immunohistochem Mol Morphol 9(4):358–363

    Article  PubMed  CAS  Google Scholar 

  • Erez A, Perelman M, Hewitt SM, Cojacaru G, Goldberg I, Shahar I et al (2004) Sil overexpression in lung cancer characterizes tumors with increased mitotic activity. Oncogene 23(31):5371–5377

    Article  PubMed  CAS  Google Scholar 

  • Fejzo MS, Slamon DJ (2010) Tissue microarrays from frozen tissues-OCT technique. Methods Mol Biol 664:73–80

    Article  PubMed  CAS  Google Scholar 

  • Fernebro E, Dictor M, Bendahl PO, Ferno M, Nilbert M (2002) Evaluation of the tissue microarray technique for immunohistochemical analysis in rectal cancer. Arch Pathol Lab Med 126(6):702–705

    PubMed  Google Scholar 

  • Fleischmann A, Schlomm T, Huland H, Kollermann J, Simon P, Mirlacher M et al (2008) Distinct subcellular expression patterns of neutral endopeptidase (CD10) in prostate cancer predict diverging clinical courses in surgically treated patients. Clin Cancer Res 14(23):7838–7842

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann A, Schlomm T, Kollermann J, Sekulic N, Huland H, Mirlacher M et al (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 69(9):976–981

    Article  PubMed  CAS  Google Scholar 

  • Gancberg D, Di Leo A, Rouas G, Jarvinen T, Verhest A, Isola J et al (2002) Reliability of the tissue microarray based FISH for evaluation of the HER-2 oncogene in breast carcinoma. J Clin Pathol 55(4):315–317

    Article  PubMed  CAS  Google Scholar 

  • Geiszt M, Lekstrom K, Brenner S, Hewitt SM, Dana R, Malech HL et al (2003) NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes. J Immunol 171(1):299–306

    PubMed  CAS  Google Scholar 

  • Ginestier C, Charafe-Jauffret E, Bertucci F, Eisinger F, Geneix J, Bechlian D et al (2002) Distinct and complementary information provided by use of tissue and DNA microarrays in the study of breast tumor markers. Am J Pathol 161(4):1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Hedvat CV, Hegde A, Chaganti RS, Chen B, Qin J, Filippa DA et al (2002) Application of tissue microarray technology to the study of non-Hodgkin’s and Hodgkin’s lymphoma. Hum Pathol 33(10):968–974

    Article  PubMed  Google Scholar 

  • Hendriks Y, Franken P, Dierssen JW, De Leeuw W, Wijnen J, Dreef E et al (2003) Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol 162(2):469–477

    Article  PubMed  CAS  Google Scholar 

  • Hoos A, Stojadinovic A, Mastorides S, Urist MJ, Polsky D, Di Como CJ et al (2001a) High Ki-67 proliferative index predicts disease specific survival in patients with high-risk soft tissue sarcomas. Cancer 92(4):869–874

    Article  PubMed  CAS  Google Scholar 

  • Hoos A, Urist MJ, Stojadinovic A, Mastorides S, Dudas ME, Leung DH et al (2001b) Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158(4):1245–1251

    Article  PubMed  CAS  Google Scholar 

  • Hoos A, Stojadinovic A, Singh B, Dudas ME, Leung DH, Shaha AR et al (2002) Clinical significance of molecular expression profiles of Hurthle cell tumors of the thyroid gland analyzed via tissue microarrays. Am J Pathol 160(1):175–183

    Article  PubMed  CAS  Google Scholar 

  • Howat WJ, Wilson SJ (2010) Resin technologies: construction and staining of resin TMA’s. Methods Mol Biol 664:63–72

    Article  PubMed  CAS  Google Scholar 

  • Howat WJ, Warford A, Mitchell JN, Clarke KF, Conquer JS, McCafferty J (2005) Resin tissue microarrays: a universal format for immunohistochemistry. J Histochem Cytochem 53(10):1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Jhavar S, Corbishley CM, Dearnaley D, Fisher C, Falconer A, Parker C et al (2005) Construction of tissue microarrays from prostate needle biopsy specimens. Br J Cancer 93(4):478–482

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi A (2010) DNA copy number analysis on tissue microarrays. Methods Mol Biol 664:127–134

    Article  PubMed  CAS  Google Scholar 

  • Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, Glatzel M (2009) Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol 65(1):24–31

    Article  PubMed  Google Scholar 

  • Khalique L, Ayhan A, Weale ME, Jacobs IJ, Ramus SJ, Gayther SA (2007) Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. J Pathol 211(3):286–295

    Article  PubMed  CAS  Google Scholar 

  • Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen G, Fritzsche FR, Wassermann K, Jager C, Tolls A, Lein M et al (2008) GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics. Br J Cancer 99(6):939–948

    Article  PubMed  CAS  Google Scholar 

  • LeBaron MJ, Crismon HR, Utama FE, Neilson LM, Sultan AS, Johnson KJ et al (2005) Ultrahigh density microarrays of solid samples. Nat Methods 2(7):511–513

    Article  PubMed  CAS  Google Scholar 

  • McCabe A, Dolled-Filhart M, Camp RL, Rimm DL (2005) Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J Natl Cancer Inst 97(24):1808–1815

    Article  PubMed  CAS  Google Scholar 

  • McCarthy F, Fletcher A, Dennis N, Cummings C, O’Donnell H, Clark J et al (2009) An improved method for constructing tissue microarrays from prostate needle biopsy specimens. J Clin Pathol 62(8):694–698

    Article  PubMed  CAS  Google Scholar 

  • Minner S, Jessen B, Stiedenroth L, Burandt E, Kollermann J, Mirlacher M et al (2010) Low level HER2 overexpression is associated with rapid tumor cell proliferation and poor prognosis in prostate cancer. Clin Cancer Res 16(5):1553–1560

    Article  PubMed  CAS  Google Scholar 

  • Mirlacher M, Simon R (2010) Recipient block TMA technique. Methods Mol Biol 664:37–44

    Article  PubMed  CAS  Google Scholar 

  • Moch H, Schraml P, Bubendorf L, Mirlacher M, Kononen J, Gasser T et al (1999) High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol 154(4):981–986

    Article  PubMed  CAS  Google Scholar 

  • Montgomery K, Zhao S, van de Rijn M, Natkunam Y (2005) A novel method for making “tissue” microarrays from small numbers of suspension cells. Appl Immunohistochem Mol Morphol 13(1):80–84

    Article  PubMed  CAS  Google Scholar 

  • Nocito A, Bubendorf L, Tinner EM, Suess K, Wagner U, Forster T et al (2001) Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J Pathol 194(3):349–357

    Article  PubMed  CAS  Google Scholar 

  • Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R et al (2004) E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene 23(33):5616–5623

    Article  PubMed  CAS  Google Scholar 

  • Pires AR, de Souza SR (2010) Hypodermic needle without recipient paraffin block technique. Methods Mol Biol 664:53–61

    Article  PubMed  CAS  Google Scholar 

  • Pires AR, Andreiuolo Fda M, de Souza SR (2006) TMA for all: a new method for the construction of tissue microarrays without recipient paraffin block using custom-built needles. Diagn Pathol 1:14

    Article  PubMed  Google Scholar 

  • Press MF, Sauter G, Bernstein L, Villalobos IE, Mirlacher M, Zhou JY et al (2005) Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials. Clin Cancer Res 11(18):6598–6607

    Article  PubMed  CAS  Google Scholar 

  • Rimm DL, Camp RL, Charette LA, Costa J, Olsen DA, Reiss M (2001) Tissue microarray: a new technology for amplification of tissue resources. Cancer J 7(1):24–31

    PubMed  CAS  Google Scholar 

  • Robanus-Maandag EC, Bosch CA, Kristel PM, Hart AA, Faneyte IF, Nederlof PM et al (2003) Association of C-MYC amplification with progression from the in situ to the invasive stage in C-MYC-amplified breast carcinomas. J Pathol 201(1):75–82

    Article  PubMed  CAS  Google Scholar 

  • Rubin MA, Dunn R, Strawderman M, Pienta KJ (2002) Tissue microarray sampling strategy for prostate cancer biomarker analysis. Am J Surg Pathol 26(3):312–319

    Article  PubMed  Google Scholar 

  • Rui H, LeBaron MJ (2005) Creating tissue microarrays by cutting-edge matrix assembly. Expert Rev Med Devices 2(6):673–680

    Article  PubMed  CAS  Google Scholar 

  • Sauter G (2010) Representativity of TMA studies. Methods Mol Biol 664:27–35

    Article  PubMed  CAS  Google Scholar 

  • Sauter G, Mihatsch MJ (1998) Pussycats and baby tigers: non-invasive (pTa) and minimally invasive (pT1) bladder carcinomas are not the same! J Pathol 185(4):339–341

    Article  PubMed  CAS  Google Scholar 

  • Schlomm T, Kirstein P, Iwers L, Daniel B, Steuber T, Walz J et al (2007) Clinical significance of epidermal growth factor receptor protein overexpression and gene copy number gains in prostate cancer. Clin Cancer Res 13(22 Pt 1):6579–6584

    Article  PubMed  CAS  Google Scholar 

  • Schlomm T, Iwers L, Kirstein P, Jessen B, Kollermann J, Minner S et al (2008) Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21(11):1371–1379

    Article  PubMed  CAS  Google Scholar 

  • Schoenberg Fejzo M, Slamon DJ (2001) Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA, and proteins. Am J Pathol 159(5):1645–1650

    Article  PubMed  CAS  Google Scholar 

  • Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A et al (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5(8):1966–1975

    PubMed  CAS  Google Scholar 

  • Shi S-R, Cote RJ, Taylor CR (2001) Antigen retrieval techniques: current perspectives. J Histochem Cytochem 49(8):931–938

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Burger H, Brinkschmidt C, Bocker W, Hertle L, Terpe HJ (1998) Chromosomal aberrations associated with invasion in papillary superficial bladder cancer. J Pathol 185(4):345–351

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Eltze E, Schafer KL, Burger H, Semjonow A, Hertle L et al (2001a) Cytogenetic analysis of multifocal bladder cancer supports a monoclonal origin and intraepithelial spread of tumor cells. Cancer Res 61(1):355–362

    PubMed  CAS  Google Scholar 

  • Simon R, Nocito A, Hubscher T, Bucher C, Torhorst J, Schraml P et al (2001b) Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J Natl Cancer Inst 93(15):1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Richter J, Wagner U, Fijan A, Bruderer J, Schmid U et al (2001c) High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy number alterations in urinary bladder cancer. Cancer Res 61(11):4514–4519

    PubMed  CAS  Google Scholar 

  • Simon R, Struckmann K, Schraml P, Wagner U, Forster T, Moch H et al (2002) Amplification pattern of 12q13-q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 21(16):2476–2483

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Atefy R, Wagner U, Forster T, Fijan A, Bruderer J et al (2003) HER-2 and TOP2A coamplification in urinary bladder cancer. Int J Cancer 107(5):764–772

    Article  PubMed  CAS  Google Scholar 

  • Tapia C, Glatz K, Novotny H, Lugli A, Horcic M, Seemayer CA et al (2007) Close association between HER-2 amplification and overexpression in human tumors of non-breast origin. Mod Pathol 20(2):192–198

    Article  PubMed  CAS  Google Scholar 

  • Tennstedt P, Köster P, Brüchmann A, Mirlacher M, Haese A, Steuber T et al (2012) The impact of the number of cores on tissue microarray studies investigating prostate cancer biomarkers. Int J Oncol 40(1):261–268

    PubMed  Google Scholar 

  • Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR et al (2001) Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 159(6):2249–2256

    Article  PubMed  CAS  Google Scholar 

  • Tzankov A, Zimpfer A, Lugli A, Krugmann J, Went P, Schraml P et al (2003) High-throughput tissue microarray analysis of G1-cyclin alterations in classical Hodgkin’s lymphoma indicates overexpression of cyclin E1. J Pathol 199(2):201–207

    Article  PubMed  CAS  Google Scholar 

  • Veeck J, Dahl E (2010) RNA expression analysis on formalin-fixed paraffin-embedded tissues in TMA format by RNA in situ hybridization. Methods Mol Biol 664:135–150

    Article  PubMed  CAS  Google Scholar 

  • Went PT, Dirnhofer S, Bundi M, Mirlacher M, Schraml P, Mangialaio S et al (2004) Prevalence of KIT expression in human tumors. J Clin Oncol 22(22):4514–4522

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Salto-Tellez M, Putti TC, Do E, Koay ES (2003) Reliability of tissue microarrays in detecting protein expression and gene amplification in breast cancer. Mod Pathol 16(1):79–84

    Article  PubMed  Google Scholar 

  • Zhao S, Natkunam Y (2010) Building “tissue” microarrays from suspension cells. Methods Mol Biol 664:93–101

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simon, R., Mirlacher, M. (2012). Tissue Microarrays for Translational Research. In: Jordan, B. (eds) Microarrays in Diagnostics and Biomarker Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28203-4_9

Download citation

Publish with us

Policies and ethics