Tissue Microarrays for Translational Research



Advances in the identification of genes and proteins that are connected to human disease have resulted in an enormously increased need for validation studies including large sets of clinically well-defined tissue samples in order to translate basic molecular findings into clinically useful applications. The tissue microarray (TMA) technology combines hundreds of minute tissue samples on a single microscopic slide and overcomes the bottleneck of traditional large section tissue analysis. The array format facilitates linking of pathological and clinical data to the molecular results obtained from TMA studies. Consequently, tissue microarrays have become a standard tool for modern high-throughput tissue analysis. Current techniques and applications of the TMA technology in cancer research are discussed.


Tissue Microarrays Ki67 Label Index Urinary Bladder Cancer Breast Cancer International Research Group Tissue Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H et al (2004) Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 64(23):8534–8540PubMedCrossRefGoogle Scholar
  2. Almanzar G, Olkhanud PB, Bodogai M, Dell’agnola C, Baatar D, Hewitt SM et al (2009) Sperm-derived SPANX-B is a clinically relevant tumor antigen that is expressed in human tumors and readily recognized by human CD4+ and CD8+ T cells. Clin Cancer Res 15(6):1954–1963PubMedCrossRefGoogle Scholar
  3. Barlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML et al (2000) Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 92(15):1252–1259PubMedCrossRefGoogle Scholar
  4. Battifora H (1986) The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 55(2):244–248PubMedGoogle Scholar
  5. Britten KM, Howarth PH, Roche WR (1993) Immunohistochemistry on resin sections: a comparison of resin embedding techniques for small mucosal biopsies. Biotech Histochem 68(5):271–280PubMedCrossRefGoogle Scholar
  6. Bubendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y et al (1999) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91(20):1758–1764PubMedCrossRefGoogle Scholar
  7. Camp RL, Charette LA, Rimm DL (2000) Validation of tissue microarray technology in breast carcinoma. Lab Invest 80(12):1943–1949PubMedCrossRefGoogle Scholar
  8. Cho EY, Han JJ, Choi YL, Kim KM, Oh YL (2008) Comparison of Her-2, EGFR and cyclin D1 in primary breast cancer and paired metastatic lymph nodes: an immunohistochemical and chromogenic in situ hybridization study. J Korean Med Sci 23(6):1053–1061PubMedCrossRefGoogle Scholar
  9. Datta MW, Kajdacsy-Balla AA (2010) Tissue microarrays from biopsy specimens. Methods Mol Biol 664:103–111PubMedCrossRefGoogle Scholar
  10. Datta MW, Kahler A, Macias V, Brodzeller T, Kajdacsy-Balla A (2005) A simple inexpensive method for the production of tissue microarrays from needle biopsy specimens: examples with prostate cancer. Appl Immunohistochem Mol Morphol 13(1):96–103PubMedCrossRefGoogle Scholar
  11. Dicken BJ, Graham K, Hamilton SM, Andrews S, Lai R, Listgarten J et al (2006) Lymphovascular invasion is associated with poor survival in gastric cancer: an application of gene-expression and tissue array techniques. Ann Surg 243(1):64–73PubMedCrossRefGoogle Scholar
  12. El Gammal AT, Bruchmann M, Zustin J, Isbarn H, Hellwinkel OJ, Kollermann J et al (2010) Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer. Clin Cancer Res 16(1):56–64PubMedCrossRefGoogle Scholar
  13. Engellau J, Akerman M, Anderson H, Domanski HA, Rambech E, Alvegard TA et al (2001) Tissue microarray technique in soft tissue sarcoma: immunohistochemical Ki-67 expression in malignant fibrous histiocytoma. Appl Immunohistochem Mol Morphol 9(4):358–363PubMedCrossRefGoogle Scholar
  14. Erez A, Perelman M, Hewitt SM, Cojacaru G, Goldberg I, Shahar I et al (2004) Sil overexpression in lung cancer characterizes tumors with increased mitotic activity. Oncogene 23(31):5371–5377PubMedCrossRefGoogle Scholar
  15. Fejzo MS, Slamon DJ (2010) Tissue microarrays from frozen tissues-OCT technique. Methods Mol Biol 664:73–80PubMedCrossRefGoogle Scholar
  16. Fernebro E, Dictor M, Bendahl PO, Ferno M, Nilbert M (2002) Evaluation of the tissue microarray technique for immunohistochemical analysis in rectal cancer. Arch Pathol Lab Med 126(6):702–705PubMedGoogle Scholar
  17. Fleischmann A, Schlomm T, Huland H, Kollermann J, Simon P, Mirlacher M et al (2008) Distinct subcellular expression patterns of neutral endopeptidase (CD10) in prostate cancer predict diverging clinical courses in surgically treated patients. Clin Cancer Res 14(23):7838–7842PubMedCrossRefGoogle Scholar
  18. Fleischmann A, Schlomm T, Kollermann J, Sekulic N, Huland H, Mirlacher M et al (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 69(9):976–981PubMedCrossRefGoogle Scholar
  19. Gancberg D, Di Leo A, Rouas G, Jarvinen T, Verhest A, Isola J et al (2002) Reliability of the tissue microarray based FISH for evaluation of the HER-2 oncogene in breast carcinoma. J Clin Pathol 55(4):315–317PubMedCrossRefGoogle Scholar
  20. Geiszt M, Lekstrom K, Brenner S, Hewitt SM, Dana R, Malech HL et al (2003) NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes. J Immunol 171(1):299–306PubMedGoogle Scholar
  21. Ginestier C, Charafe-Jauffret E, Bertucci F, Eisinger F, Geneix J, Bechlian D et al (2002) Distinct and complementary information provided by use of tissue and DNA microarrays in the study of breast tumor markers. Am J Pathol 161(4):1223–1233PubMedCrossRefGoogle Scholar
  22. Hedvat CV, Hegde A, Chaganti RS, Chen B, Qin J, Filippa DA et al (2002) Application of tissue microarray technology to the study of non-Hodgkin’s and Hodgkin’s lymphoma. Hum Pathol 33(10):968–974PubMedCrossRefGoogle Scholar
  23. Hendriks Y, Franken P, Dierssen JW, De Leeuw W, Wijnen J, Dreef E et al (2003) Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol 162(2):469–477PubMedCrossRefGoogle Scholar
  24. Hoos A, Stojadinovic A, Mastorides S, Urist MJ, Polsky D, Di Como CJ et al (2001a) High Ki-67 proliferative index predicts disease specific survival in patients with high-risk soft tissue sarcomas. Cancer 92(4):869–874PubMedCrossRefGoogle Scholar
  25. Hoos A, Urist MJ, Stojadinovic A, Mastorides S, Dudas ME, Leung DH et al (2001b) Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158(4):1245–1251PubMedCrossRefGoogle Scholar
  26. Hoos A, Stojadinovic A, Singh B, Dudas ME, Leung DH, Shaha AR et al (2002) Clinical significance of molecular expression profiles of Hurthle cell tumors of the thyroid gland analyzed via tissue microarrays. Am J Pathol 160(1):175–183PubMedCrossRefGoogle Scholar
  27. Howat WJ, Wilson SJ (2010) Resin technologies: construction and staining of resin TMA’s. Methods Mol Biol 664:63–72PubMedCrossRefGoogle Scholar
  28. Howat WJ, Warford A, Mitchell JN, Clarke KF, Conquer JS, McCafferty J (2005) Resin tissue microarrays: a universal format for immunohistochemistry. J Histochem Cytochem 53(10):1189–1197PubMedCrossRefGoogle Scholar
  29. Jhavar S, Corbishley CM, Dearnaley D, Fisher C, Falconer A, Parker C et al (2005) Construction of tissue microarrays from prostate needle biopsy specimens. Br J Cancer 93(4):478–482PubMedCrossRefGoogle Scholar
  30. Kallioniemi A (2010) DNA copy number analysis on tissue microarrays. Methods Mol Biol 664:127–134PubMedCrossRefGoogle Scholar
  31. Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, Glatzel M (2009) Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol 65(1):24–31PubMedCrossRefGoogle Scholar
  32. Khalique L, Ayhan A, Weale ME, Jacobs IJ, Ramus SJ, Gayther SA (2007) Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. J Pathol 211(3):286–295PubMedCrossRefGoogle Scholar
  33. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847PubMedCrossRefGoogle Scholar
  34. Kristiansen G, Fritzsche FR, Wassermann K, Jager C, Tolls A, Lein M et al (2008) GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics. Br J Cancer 99(6):939–948PubMedCrossRefGoogle Scholar
  35. LeBaron MJ, Crismon HR, Utama FE, Neilson LM, Sultan AS, Johnson KJ et al (2005) Ultrahigh density microarrays of solid samples. Nat Methods 2(7):511–513PubMedCrossRefGoogle Scholar
  36. McCabe A, Dolled-Filhart M, Camp RL, Rimm DL (2005) Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J Natl Cancer Inst 97(24):1808–1815PubMedCrossRefGoogle Scholar
  37. McCarthy F, Fletcher A, Dennis N, Cummings C, O’Donnell H, Clark J et al (2009) An improved method for constructing tissue microarrays from prostate needle biopsy specimens. J Clin Pathol 62(8):694–698PubMedCrossRefGoogle Scholar
  38. Minner S, Jessen B, Stiedenroth L, Burandt E, Kollermann J, Mirlacher M et al (2010) Low level HER2 overexpression is associated with rapid tumor cell proliferation and poor prognosis in prostate cancer. Clin Cancer Res 16(5):1553–1560PubMedCrossRefGoogle Scholar
  39. Mirlacher M, Simon R (2010) Recipient block TMA technique. Methods Mol Biol 664:37–44PubMedCrossRefGoogle Scholar
  40. Moch H, Schraml P, Bubendorf L, Mirlacher M, Kononen J, Gasser T et al (1999) High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol 154(4):981–986PubMedCrossRefGoogle Scholar
  41. Montgomery K, Zhao S, van de Rijn M, Natkunam Y (2005) A novel method for making “tissue” microarrays from small numbers of suspension cells. Appl Immunohistochem Mol Morphol 13(1):80–84PubMedCrossRefGoogle Scholar
  42. Nocito A, Bubendorf L, Tinner EM, Suess K, Wagner U, Forster T et al (2001) Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J Pathol 194(3):349–357PubMedCrossRefGoogle Scholar
  43. Oeggerli M, Tomovska S, Schraml P, Calvano-Forte D, Schafroth S, Simon R et al (2004) E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene 23(33):5616–5623PubMedCrossRefGoogle Scholar
  44. Pires AR, de Souza SR (2010) Hypodermic needle without recipient paraffin block technique. Methods Mol Biol 664:53–61PubMedCrossRefGoogle Scholar
  45. Pires AR, Andreiuolo Fda M, de Souza SR (2006) TMA for all: a new method for the construction of tissue microarrays without recipient paraffin block using custom-built needles. Diagn Pathol 1:14PubMedCrossRefGoogle Scholar
  46. Press MF, Sauter G, Bernstein L, Villalobos IE, Mirlacher M, Zhou JY et al (2005) Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials. Clin Cancer Res 11(18):6598–6607PubMedCrossRefGoogle Scholar
  47. Rimm DL, Camp RL, Charette LA, Costa J, Olsen DA, Reiss M (2001) Tissue microarray: a new technology for amplification of tissue resources. Cancer J 7(1):24–31PubMedGoogle Scholar
  48. Robanus-Maandag EC, Bosch CA, Kristel PM, Hart AA, Faneyte IF, Nederlof PM et al (2003) Association of C-MYC amplification with progression from the in situ to the invasive stage in C-MYC-amplified breast carcinomas. J Pathol 201(1):75–82PubMedCrossRefGoogle Scholar
  49. Rubin MA, Dunn R, Strawderman M, Pienta KJ (2002) Tissue microarray sampling strategy for prostate cancer biomarker analysis. Am J Surg Pathol 26(3):312–319PubMedCrossRefGoogle Scholar
  50. Rui H, LeBaron MJ (2005) Creating tissue microarrays by cutting-edge matrix assembly. Expert Rev Med Devices 2(6):673–680PubMedCrossRefGoogle Scholar
  51. Sauter G (2010) Representativity of TMA studies. Methods Mol Biol 664:27–35PubMedCrossRefGoogle Scholar
  52. Sauter G, Mihatsch MJ (1998) Pussycats and baby tigers: non-invasive (pTa) and minimally invasive (pT1) bladder carcinomas are not the same! J Pathol 185(4):339–341PubMedCrossRefGoogle Scholar
  53. Schlomm T, Kirstein P, Iwers L, Daniel B, Steuber T, Walz J et al (2007) Clinical significance of epidermal growth factor receptor protein overexpression and gene copy number gains in prostate cancer. Clin Cancer Res 13(22 Pt 1):6579–6584PubMedCrossRefGoogle Scholar
  54. Schlomm T, Iwers L, Kirstein P, Jessen B, Kollermann J, Minner S et al (2008) Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21(11):1371–1379PubMedCrossRefGoogle Scholar
  55. Schoenberg Fejzo M, Slamon DJ (2001) Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA, and proteins. Am J Pathol 159(5):1645–1650PubMedCrossRefGoogle Scholar
  56. Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A et al (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5(8):1966–1975PubMedGoogle Scholar
  57. Shi S-R, Cote RJ, Taylor CR (2001) Antigen retrieval techniques: current perspectives. J Histochem Cytochem 49(8):931–938PubMedCrossRefGoogle Scholar
  58. Simon R, Burger H, Brinkschmidt C, Bocker W, Hertle L, Terpe HJ (1998) Chromosomal aberrations associated with invasion in papillary superficial bladder cancer. J Pathol 185(4):345–351PubMedCrossRefGoogle Scholar
  59. Simon R, Eltze E, Schafer KL, Burger H, Semjonow A, Hertle L et al (2001a) Cytogenetic analysis of multifocal bladder cancer supports a monoclonal origin and intraepithelial spread of tumor cells. Cancer Res 61(1):355–362PubMedGoogle Scholar
  60. Simon R, Nocito A, Hubscher T, Bucher C, Torhorst J, Schraml P et al (2001b) Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J Natl Cancer Inst 93(15):1141–1146PubMedCrossRefGoogle Scholar
  61. Simon R, Richter J, Wagner U, Fijan A, Bruderer J, Schmid U et al (2001c) High-throughput tissue microarray analysis of 3p25 (RAF1) and 8p12 (FGFR1) copy number alterations in urinary bladder cancer. Cancer Res 61(11):4514–4519PubMedGoogle Scholar
  62. Simon R, Struckmann K, Schraml P, Wagner U, Forster T, Moch H et al (2002) Amplification pattern of 12q13-q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 21(16):2476–2483PubMedCrossRefGoogle Scholar
  63. Simon R, Atefy R, Wagner U, Forster T, Fijan A, Bruderer J et al (2003) HER-2 and TOP2A coamplification in urinary bladder cancer. Int J Cancer 107(5):764–772PubMedCrossRefGoogle Scholar
  64. Tapia C, Glatz K, Novotny H, Lugli A, Horcic M, Seemayer CA et al (2007) Close association between HER-2 amplification and overexpression in human tumors of non-breast origin. Mod Pathol 20(2):192–198PubMedCrossRefGoogle Scholar
  65. Tennstedt P, Köster P, Brüchmann A, Mirlacher M, Haese A, Steuber T et al (2012) The impact of the number of cores on tissue microarray studies investigating prostate cancer biomarkers. Int J Oncol 40(1):261–268PubMedGoogle Scholar
  66. Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR et al (2001) Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 159(6):2249–2256PubMedCrossRefGoogle Scholar
  67. Tzankov A, Zimpfer A, Lugli A, Krugmann J, Went P, Schraml P et al (2003) High-throughput tissue microarray analysis of G1-cyclin alterations in classical Hodgkin’s lymphoma indicates overexpression of cyclin E1. J Pathol 199(2):201–207PubMedCrossRefGoogle Scholar
  68. Veeck J, Dahl E (2010) RNA expression analysis on formalin-fixed paraffin-embedded tissues in TMA format by RNA in situ hybridization. Methods Mol Biol 664:135–150PubMedCrossRefGoogle Scholar
  69. Went PT, Dirnhofer S, Bundi M, Mirlacher M, Schraml P, Mangialaio S et al (2004) Prevalence of KIT expression in human tumors. J Clin Oncol 22(22):4514–4522PubMedCrossRefGoogle Scholar
  70. Zhang D, Salto-Tellez M, Putti TC, Do E, Koay ES (2003) Reliability of tissue microarrays in detecting protein expression and gene amplification in breast cancer. Mod Pathol 16(1):79–84PubMedCrossRefGoogle Scholar
  71. Zhao S, Natkunam Y (2010) Building “tissue” microarrays from suspension cells. Methods Mol Biol 664:93–101PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of PathologyUniversity Medical Center Hamburg EppendorfHamburgGermany

Personalised recommendations