Slow Off-Rate Modified Aptamer Arrays for Biomarker Discovery and Diagnostic Applications

Chapter

Abstract

DNA microarrays are currently playing a central role in biomarker discovery and in the development of diagnostics for personalized medicine. Our vision is a technology that enables proteomics in the same revolutionary way that DNA microarrays enabled nucleic acid-based omics, allowing simple, reliable, sensitive, accurate, quantitative, and highly multiplexed measurements for the discovery of protein biomarkers and the development of new diagnostics to transform personalized medicine. We recently reached an important milestone, making unbiased protein biomarker discovery routine and fast. Microarrays played a prominent role in our experiments and will be central to the ongoing evolution of our platform. Our technology is powered by a new class of single-stranded DNA-based protein affinity binding reagents we call SOMAmers—slow off-rate modified aptamers. SOMAmers have a dual nature that is essential in our work: under normal conditions (e.g., physiologic in serum), SOMAmers fold into specific shapes that bind target proteins with high affinity (sub-nM K d), but when SOMAmers are denatured, they can be detected and quantified by hybridizing to a standard DNA microarray.

Keywords

Chronic Kidney Disease Chronic Kidney Disease Progression Discovery Platform Proteomics Platform Affinity Reagent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank all our colleagues who have contributed to developing SomaLogic’s unbiased, high-scale proteomics technology and in particular those who developed SOMAmers and the SOMAscan proteomics assay for biomarker discovery. We especially thank Nebojsa Janjic, Nick Saccomano, and Steve Williams and their research groups for their dedicated efforts in developing this technology.

References

  1. Addona TA, Abbatiello SE, Schilling B et al (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27:633–641. doi: 10.1038/nbt.1546 PubMedCrossRefGoogle Scholar
  2. Aebersold R (2009) A stress test for mass spectrometry–based proteomics. Nat Methods 6:411–412. doi: 10.1038/nmeth0609-411 PubMedCrossRefGoogle Scholar
  3. Anderson NL (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867. doi: 10.1074/mcp.R200007-MCP200 PubMedCrossRefGoogle Scholar
  4. Anderson NL (2010) The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 56:177–185. doi: 10.1373/clinchem.2009.126706 PubMedCrossRefGoogle Scholar
  5. Bell AW, Deutsch EW, Au CE et al (2009) A HUPO test sample study reveals common problems in mass spectrometry-based proteomics. Nat Methods 6:423–430. doi: 10.1038/nmeth.1333 PubMedCrossRefGoogle Scholar
  6. Bock C, Coleman M, Collins B et al (2004) Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 4:609–618. doi: 10.1002/pmic.200300631 PubMedCrossRefGoogle Scholar
  7. Boyle P, Levin B (2008) World cancer report. International Agency for Research on Cancer, LyonGoogle Scholar
  8. Brody EN, Gold L, Lawn RM et al (2010) High-content affinity-based proteomics: unlocking protein biomarker discovery. Expert Rev Mol Diagn 10:1013–1022. doi: 10.1586/erm.10.89 PubMedCrossRefGoogle Scholar
  9. Chaudhary K, Phadke G, Nistala R et al (2010) The emerging role of biomarkers in diabetic and hypertensive chronic kidney disease. Curr Diab Rep 10:37–42. doi: 10.1007/s11892-009-0080-z PubMedCrossRefGoogle Scholar
  10. Eaton BE, Gold L, Zichi DA (1995) Let’s get specific: the relationship between specificity and affinity. Chem Biol 2:633–638. doi: 10.1016/S0031-9406(05)67026-5 PubMedCrossRefGoogle Scholar
  11. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. doi: 10.1038/346818a0 PubMedCrossRefGoogle Scholar
  12. Giannelli SV, Patel KV, Windham BG et al (2007) Magnitude of underascertainment of impaired kidney function in older adults with normal serum creatinine. J Am Geriatr Soc 55:816–823. doi: 10.1111/j.1532-5415.2007.01196.x PubMedCrossRefGoogle Scholar
  13. Glass DJ (2010) A critique of the hypothesis, and a defense of the question, as a framework for experimentation. Clin Chem 56:1080–1085. doi: 10.1373/clinchem.2010.144477 PubMedCrossRefGoogle Scholar
  14. Gold L, Ayers D, Bertino J et al (2010a) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004. doi: 10.1371/journal.pone.0015004 PubMedCrossRefGoogle Scholar
  15. Gold L, Janjic N, Jarvis T et al (2010b) Aptamers and the RNA world, past and present. In: Atkins JF, Gesteland RF, Cech T (eds) RNA worlds, 3rd edn. Cold Spring Harbor, NY, pp 343–341Google Scholar
  16. Golden MC, Collins BD, Willis MC, Koch TH (2000) Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J Biotechnol 81:167–178PubMedCrossRefGoogle Scholar
  17. Hopfield JJ (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71:4135–4139PubMedCrossRefGoogle Scholar
  18. Hopfield JJ, Yamane T, Yue V, Coutts SM (1976) Direct experimental evidence for kinetic proofreading in amino acylation of tRNAIle. Proc Natl Acad Sci USA 73:1164–1168PubMedCrossRefGoogle Scholar
  19. Huang D-B, Vu D, Cassiday LA et al (2003) Crystal structure of NF-kappaB (p50)2 complexed to a high-affinity RNA aptamer. Proc Natl Acad Sci USA 100:9268–9273. doi: 10.1073/pnas.1632011100 PubMedCrossRefGoogle Scholar
  20. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96. doi: 10.3322/CA.2007.0010 PubMedCrossRefGoogle Scholar
  21. Kassis ES, Vaporciyan AA, Swisher SG et al (2009) Application of the revised lung cancer staging system (IASLC Staging Project) to a cancer center population. J Thorac Cardiovasc Surg 138:412–418. doi: 10.1016/j.jtcvs.2009.01.033, e1-2PubMedCrossRefGoogle Scholar
  22. Keeney TR, Bock C, Gold L et al (2009) Automation of the SomaLogic proteomics assay: a platform for biomarker discovery. J Assoc Lab Automation 14:360–366. doi: 10.1016/j.jala.2009.05.003 CrossRefGoogle Scholar
  23. Kell DB, Oliver SG (2004) Here is the evidence, now what is the hypothesis? the complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26:99–105. doi: 10.1002/bies.10385 PubMedCrossRefGoogle Scholar
  24. Kraemer S, Vaught JD, Bock C et al (2011) From SOMAmer-based biomarker discovery to diagnostic and clinical applications: a SOMAmer-based, streamlined multiplex proteomic assay. PLoS One 6:e26332. doi: 10.1371/journal.pone.0026332 PubMedCrossRefGoogle Scholar
  25. Lander AD (2010) The edges of understanding. BMC Biology 8:40. doi: 10.1186/1741-7007-8-40 PubMedGoogle Scholar
  26. Levey AS, Atkins R, Coresh J et al (2007) Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from kidney disease improving global outcomes. Kidney Int 72:247–259. doi: 10.1038/sj.ki.5002343 PubMedCrossRefGoogle Scholar
  27. Lin H, Lee E, Hestir K et al (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science(80-) 320:807–11. doi: 10.1126/science.1154370 Google Scholar
  28. Liotta LA, Petricoin EF (2010) Mass spectrometry-based protein biomarker discovery and measurement: sensitivity is the greatest hurdle. Clinical Proteomics 6:4–5. doi: 10.1007/s12014-010-9045-0 CrossRefGoogle Scholar
  29. Long SB, Long MB, White RR, Sullenger BA (2008) Crystal structure of an RNA aptamer bound to thrombin. RNA 14:2504–2512. doi: 10.1261/rna.1239308 PubMedCrossRefGoogle Scholar
  30. Mitchell P (2010) Proteomics retrenches. Nat Biotechnol 28:665–670. doi: 10.1038/nbt0710-665 PubMedCrossRefGoogle Scholar
  31. Nabel GJ (2009) The Coordinates of truth. Science 326:53–54PubMedCrossRefGoogle Scholar
  32. Nickolas TL, Barasch J, Devarajan P (2008) Biomarkers in acute and chronic kidney disease. Curr Opin Nephrol Hypertens 17:127–132. doi: 10.1097/MNH.0b013e3282f4e525 PubMedCrossRefGoogle Scholar
  33. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedGoogle Scholar
  34. Okada M, Nishio W, Sakamoto T et al (2005) Effect of tumor size on prognosis in patients with non-small cell lung cancer: the role of segmentectomy as a type of lesser resection. J Thorac Cardiovasc Surg 129:87–93. doi: 10.1016/j.jtcvs.2004.04.030 PubMedCrossRefGoogle Scholar
  35. Ostroff R, Foreman T, Keeney TR et al (2010a) The stability of the circulating human proteome to variations in sample collection and handling procedures measured with an aptamer-based proteomics array. J Proteomics 73:649–666. doi: 10.1016/j.jprot.2009.09.004 PubMedCrossRefGoogle Scholar
  36. Ostroff RM, Bigbee WL, Franklin W et al (2010b) Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer. PLoS One 5:e15003. doi: 10.1371/journal.pone.0015003 PubMedCrossRefGoogle Scholar
  37. Pan S, Aebersold R, Chen R et al (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8:787–797. doi: 10.1021/pr800538n PubMedCrossRefGoogle Scholar
  38. Pascual M, Steiger G, Estreicher J et al (1988) Metabolism of complement factor D in renal failure. Kidney Int 34:529–536PubMedCrossRefGoogle Scholar
  39. Pepe MS, Feng Z (2011) Improving biomarker identification with better designs and reporting. Clin Chem 1095:1093–1095. doi: 10.1373/clinchem.2011.164657 CrossRefGoogle Scholar
  40. Pepe MS, Etzioni R, Feng Z et al (2001) Phases of biomarker development for early detection of cancer OF. Cancer 93:1054–1061Google Scholar
  41. Pepe MS, Feng Z, Janes H et al (2008) Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst 100:1432–1438. doi: 10.1093/jnci/djn326 PubMedCrossRefGoogle Scholar
  42. Petach H (2002) Dimensionality is the issue: use of photoaptamers in protein microarrays. Curr Opin Biotechnol 13:309–314. doi: 10.1016/S0958-1669(02)00329-4 PubMedCrossRefGoogle Scholar
  43. Ransohoff DF (2004) Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer 4:309–314. doi: 10.1038/nrc1322 PubMedCrossRefGoogle Scholar
  44. Ransohoff DF, Gourlay ML (2010) Sources of bias in specimens for research about molecular markers for cancer. J Clin Oncol 28:698–704. doi: 10.1200/JCO.2009.25.6065 PubMedCrossRefGoogle Scholar
  45. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983. doi: 10.1038/nbt1235 PubMedCrossRefGoogle Scholar
  46. Service RF (2008) Proteomics ponders prime time. Science (80-) 321:1758–1761CrossRefGoogle Scholar
  47. Silberring J, Ciborowski P (2010) Biomarker discovery and clinical proteomics. Trends Anal Chem 29:128. doi: 10.1016/j.trac.2009.11.007 CrossRefGoogle Scholar
  48. Smith D (2002) Sensitivity and specificity of photoaptamer probes. Mol Cell Proteomics 2:11–18. doi: 10.1074/mcp.M200059-MCP200 Google Scholar
  49. Smith D, Collins BD, Heil J, Koch TH (2003) Sensitivity and specificity of photoaptamer probes. Mol Cell Proteomics 2:11–18PubMedCrossRefGoogle Scholar
  50. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMedCrossRefGoogle Scholar
  51. van Riemsdijk-van Overbeeke IC, Baan CC, Hesse CJ et al (2000) TNF-alpha: mRNA, plasma protein levels and soluble receptors in patients on chronic hemodialysis, on CAPD and with end-stage renal failure. Clin Nephrol 53:115–123PubMedGoogle Scholar
  52. Vaught JD, Dewey T, Eaton BE (2004) T7 RNA polymerase transcription with 5-position modified UTP derivatives. J Am Chem Soc 126:11231–11237. doi: 10.1021/ja049009h PubMedCrossRefGoogle Scholar
  53. Vaught JD, Bock C, Carter J et al (2010) Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc 132:4141–4151. doi: 10.1021/ja908035g PubMedCrossRefGoogle Scholar
  54. Venturoli D, Rippe B (2005) Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Renal Physiol 288:F605–F613. doi: 10.1152/ajprenal.00171.2004 PubMedCrossRefGoogle Scholar
  55. Vicens Q, Cech TR (2006) Atomic level architecture of group I introns revealed. Trends Biochem Sci 31:41–51. doi: 10.1016/j.tibs.2005.11.008 PubMedCrossRefGoogle Scholar
  56. Zichi D, Koga T, Greef C et al (2002) Photoaptamer technology: development of multiplexed microarray protein assays. Clin Chem 48:1865–1867Google Scholar
  57. Zichi D, Eaton B, Singer B, Gold L (2008) Proteomics and diagnostics: let’s get specific, again. Curr Opin Chem Biol 12:78–85. doi: 10.1016/j.cbpa.2008.01.016 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jeffrey J. Walker
    • 1
  • Edward N. Brody
    • 1
  • Larry Gold
    • 1
    • 2
  1. 1.SomaLogicBoulderUSA
  2. 2.Department of Molecular, Cellular, and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations