Protein Microarrays and Their Potential Clinical Applications in the Era of Personalized Medicine

  • Hong Zhang
  • Steven Pelech


Despite the success of DNA microarrays in uncovering gene mutations and gene expression patterns linked to specific diseases, genomic profiling provides little insight into the rapid dynamics of cellular signaling networks with respect to the actual levels, subcellular locations, and functional activities of proteins and their interactions. Such information is essential for a fuller understanding of the molecular events underlying malignant transformation. While much more technologically challenging than oligonucleotide microarrays, in recent years, protein microarrays have also emerged as full-fledged discovery tools for disease biomarkers discovery, as evidenced by an increasing number of studies in which protein microarrays have been employed. In this review, we will highlight some of the recent technological improvements in relation to the two most commonly used types of protein microarrays, i.e., antibody microarrays and reverse-phase protein lysate microarrays. We assess the potential of the future integration of protein microarrays in clinical practices through review of their applications in studies of a wide range of diseases as well as in therapeutic drug discovery efforts. The challenges and outlook of protein microarrays in the era of personalized medicine are also considered.


Human Epidermal Growth Factor Receptor Laser Capture Microdissection Protein Microarrays Antibody Array Array Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson KS, Sibani S, Wallstrom G, Qiu J, Mendoza EA, Raphael J, Hainsworth E, Montor WR, Wong J, Park JG, Lokko N, Logvinenko T, Ramachandran N, Godwin AK, Marks J, Engstrom P, Labaer J (2011) Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J Proteome Res 10:85–96PubMedCrossRefGoogle Scholar
  2. Angenendt P, Glökler J, Sobek J, Lehrach H, Cahill DJ (2003) Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. J Chromatogr A 1009:97–104PubMedCrossRefGoogle Scholar
  3. Baehner FL, Lee M, Demeure MJ, Bussey KJ, Kiefer JA, Barrett MT (2011) Genomic signatures of cancer: basis for individualized risk assessment, selective staging and therapy. J Surg Oncol 103:563–573. doi: 10.1002/jso.21838 PubMedCrossRefGoogle Scholar
  4. Baldrich E (2011) Aptamer arrays. Methods Mol Biol 671:35–54PubMedCrossRefGoogle Scholar
  5. Berg D, Hipp S, Malinowsky K, Böllner C, Becker KF (2010) Molecular profiling of signalling pathways in formalin-fixed and paraffin-embedded cancer tissues. Eur J Cancer 46:47–55PubMedCrossRefGoogle Scholar
  6. Berg D, Langer R, Tran K, Walch A, Schuster T, Bronger H, Becker KF (2011) Protein microarray-based comparison of HER2, estrogen receptor, and progesterone receptor status in core biopsies and surgical specimens from FFPE breast cancer tissues. Appl Immunohistochem Mol Morphol 19:300–305PubMedCrossRefGoogle Scholar
  7. Carlsson A, Wingren C, Ingvarsson J, Ellmark P, Baldertorp B, Fernö M, Olsson H, Borrebaeck CA (2008) Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays. Eur J Cancer 44:472–480PubMedCrossRefGoogle Scholar
  8. Chandra H, Reddy PJ, Srivastava S (2011) Protein microarrays and novel detection platforms. Expert Rev Proteomics 8:61–79PubMedCrossRefGoogle Scholar
  9. Daniela B, Claudia W, Katharina M, Kai T, Axel W, Holger B, Holger B, Tibor S, Heinz H, Karl-Friedrich B (2012) Profiling signalling pathways in formalin-fixed and paraffin-embedded breast cancer tissues reveals cross-talk between EGFR, HER2, HER3 and uPAR. J Cell Physiol 227:204–212. doi: 10.1002/jcp.22718 Google Scholar
  10. Davies AH, Barrett I, Pambid MR, Hu K, Stratford AL, Freeman S, Berquin IM, Pelech S, Hieter P, Maxwell C, Dunn SE (2011) YB-1 evokes susceptibility to cancer through cytokinesis failure, mitotic dysfunction and HER2 amplification. Oncogene 30:3649–3660. doi: 10.1038/onc.2011.82 PubMedCrossRefGoogle Scholar
  11. Ekins RP, Chu FW (1991) Multianalyte microspot immunoassay–microanalytical “compact disk” of the future. Clin Chem 37:1955–1967PubMedGoogle Scholar
  12. Frederick MJ, VanMeter AJ, Gadhikar MA, Henderson YC, Yao H, Pickering CC, Williams MD, El-Naggar AK, Sandulache V, Tarco E, Myers JN, Clayman GL, Liotta LA, Petricoin EF 3, Calvert VS, Fodale V, Wang J, Weber RS (2011) Phosphoproteomic analysis of signaling pathways in head and neck squamous cell carcinoma patient samples. Am J Pathol 178:548–571PubMedCrossRefGoogle Scholar
  13. Fujita K, Ewing CM, Sokoll LJ, Elliott DJ, Cunningham M, De Marzo AM, Isaacs WB, Pavlovich CP (2008) Cytokine profiling of prostatic fluid from cancerous prostate glands identifies cytokines associated with extent of tumor and inflammation. Prostate 68:872–882PubMedCrossRefGoogle Scholar
  14. Gao WM, Kuick R, Orchekowski RP, Misek DE, Qiu J, Greenberg AK, Rom WN, Brenner DE, Omenn GS, Haab BB, Hanash SM (2005) Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC Cancer 5:110PubMedCrossRefGoogle Scholar
  15. Geierstanger BH, Saviranta P, Brinker A (2006) Antibody microarrays using resonance light-scattering particles for detection. Methods Mol Biol 328:31–50PubMedGoogle Scholar
  16. Grote T, Siwak DR, Fritsche HA, Joy C, Mills GB, Simeone D, Whitcomb DC, Logsdon CD (2008) Validation of reverse phase protein array for practical screening of potential biomarkers in serum and plasma: accurate detection of CA19-9 levels in pancreatic cancer. Proteomics 8:3051–3060PubMedCrossRefGoogle Scholar
  17. Gyorgy AB, Walker J, Wingo D, Eidelman O, Pollard HB, Molnar A, Agoston DV (2010) Reverse phase protein microarray technology in traumatic brain injury. J Neurosci Methods 192:96–101PubMedCrossRefGoogle Scholar
  18. Haab BB, Dunham MJ, Brown PO (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2:1–22CrossRefGoogle Scholar
  19. Han MK, Oh YH, Kang J, Kim YP, Seo S, Kim J, Park K, Kim HS (2009) Protein profiling in human sera for identification of potential lung cancer biomarkers using antibody microarray. Proteomics 9:5544–5552PubMedCrossRefGoogle Scholar
  20. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  21. Hudelist G, Pacher-Zavisin M, Singer CF, Holper T, Kubista E, Schreiber M, Manavi M, Bilban M, Czerwenka K (2004) Use of high-throughput protein array for profiling of differentially expressed proteins in normal and malignant breast tissue. Breast Cancer Res Treat 86:281–291PubMedCrossRefGoogle Scholar
  22. Improta G, Zupa A, Fillmore H, Deng J, Aieta M, Musto P, Liotta LA, Broaddus W, Petricoin EF, Wulfkuhle JD (2011) Protein pathway activation mapping of brain metastasis from lung and breast cancers reveals organ type specific drug target activation. J Proteome Res 10:3089–3097, PubMed PMID:21574647PubMedCrossRefGoogle Scholar
  23. Ingvarsson J, Wingren C, Carlsson A, Ellmark P, Wahren B, Engström G, Harmenberg U, Krogh M, Peterson C, Borrebaeck CA (2008) Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics 8:2211–2219PubMedCrossRefGoogle Scholar
  24. Jiang R, Mircean C, Shmulevich I, Cogdell D, Jia Y, Tabus I, Aldape K, Sawaya R, Bruner JM, Fuller GN, Zhang W (2006) Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays. Proteomics 6:2964–2971PubMedCrossRefGoogle Scholar
  25. Knezevic V, Leethanakul C, Bichsel VE, Worth JM, Prabhu VV, Gutkind JS, Liotta LA, Munson PJ, Petricoin EF 3, Krizman DB (2001) Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1:1271–1278PubMedCrossRefGoogle Scholar
  26. Koga H, Kyo M, Usui-Aoki K, Inamori K (2006) A chip-based miniaturized format for protein-expression profiling: the exploitation of comprehensively produced antibodies. Electrophoresis 27:3676–3683PubMedCrossRefGoogle Scholar
  27. Leivonen SK, Mäkelä R, Ostling P, Kohonen P, Haapa-Paananen S, Kleivi K, Enerly E, Aakula A, Hellström K, Sahlberg N, Kristensen VN, Børresen-Dale AL, Saviranta P, Perälä M, Kallioniemi O (2009) Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28:3926–3936PubMedCrossRefGoogle Scholar
  28. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32:526–532PubMedCrossRefGoogle Scholar
  29. Madoz-Gúrpide J, Cañamero M, Sanchez L, Solano J, Alfonso P, Casal JI (2007) A proteomics analysis of cell signaling alterations in colorectal cancer. Mol Cell Proteomics 6:2150–2164PubMedCrossRefGoogle Scholar
  30. Mannsperger HA, Uhlmann S, Schmidt C, Wiemann S, Sahin O, Korf U (2010) RNAi-based validation of antibodies for reverse phase protein arrays. Proteome Sci 8:69PubMedCrossRefGoogle Scholar
  31. Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, Teh BS, Haab BB (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3:56–63PubMedCrossRefGoogle Scholar
  32. Mueller C, Liotta LA, Espina V (2010) Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 4:461–481PubMedCrossRefGoogle Scholar
  33. Nanjundan M, Byers LA, Carey MS, Siwak DR, Raso MG, Diao L, Wang J, Coombes KR, Roth JA, Mills GB, Wistuba II, Minna JD, Heymach JV (2010) Proteomic profiling identifies pathways dysregulated in non-small cell lung cancer and an inverse association of AMPK and adhesion pathways with recurrence. J Thorac Oncol 5:1894–1904PubMedCrossRefGoogle Scholar
  34. Orchekowski R, Hamelinck D, Li L, Gliwa E, vanBrocklin M, Marrero JA, Vande Woude GF, Feng Z, Brand R, Haab BB (2005) Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res 65:11193–11202PubMedCrossRefGoogle Scholar
  35. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin EF III, Liotta LA (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989PubMedCrossRefGoogle Scholar
  36. Petricoin EF 3, Espina V, Araujo RP, Midura B, Yeung C, Wan X, Eichler GS, Johann DJ Jr, Qualman S, Tsokos M, Krishnan K, Helman LJ, Liotta LA (2007) Phosphoprotein pathway mapping: akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440PubMedCrossRefGoogle Scholar
  37. Qin H, Lee IF, Panagiotopoulos C, Wang X, Chu AD, Utz PJ, Priatel JJ, Tan R (2011) Natural killer cells from children with type 1 diabetes have defects in NKG2D-dependent function and signaling. Diabetes 60:857–866PubMedCrossRefGoogle Scholar
  38. Ramachandran N, Larson DN, Stark PR, Hainsworth E, LaBaer J (2006) Emerging tools for real-time label-free detection of interactions on functional protein microarrays. FEBS J 272:5412–5425CrossRefGoogle Scholar
  39. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983PubMedCrossRefGoogle Scholar
  40. Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C (2006) Profiling bladder cancer using targeted antibody arrays. Am J Pathol 168:93–103PubMedCrossRefGoogle Scholar
  41. Schweitzer B, Roberts S, Grimwade B, Shao W, Wang M, Fu Q, Shu Q, Laroche I, Zhou Z, Tchernev VT, Christiansen J, Velleca M, Kingsmore SF (2002) Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol 20:359–365PubMedCrossRefGoogle Scholar
  42. Sevecka M, Wolf-Yadlin A, MacBeath G (2011) Lysate microarrays enable high-throughput, quantitative investigations of cellular signaling. Mol Cell Proteomics 10(4):M110.005363PubMedCrossRefGoogle Scholar
  43. Shao W, Zhou Z, Laroche I, Lu H, Zong Q, Patel DD, Kingsmore S, Piccoli SP (2003) Optimization of rolling-circle amplified protein microarrays for multiplexed protein profiling. J Biomed Biotechnol 2003:299–307PubMedCrossRefGoogle Scholar
  44. Silvestri A, Colombatti A, Calvert VS, Deng J, Mammano E, Belluco C, De Marchi F, Nitti D, Liotta LA, Petricoin EF, Pierobon M (2010) Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Invest 90:787–796PubMedCrossRefGoogle Scholar
  45. Smith L, Watson MB, O’Kane SL, Drew PJ, Lind MJ, Cawkwell L (2006) The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol Cancer Ther 5:2115–2120PubMedCrossRefGoogle Scholar
  46. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, Kornblau SM (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5:2512–2521PubMedCrossRefGoogle Scholar
  47. Uemura N, Nakanishi Y, Kato H, Nagino M, Hirohashi S, Kondo T (2009) Antibody-based proteomics for esophageal cancer: Identification of proteins in the nuclear factor-kappaB pathway and mitotic checkpoint. Cancer Sci 100:1612–1622PubMedCrossRefGoogle Scholar
  48. van Oostrum J, Calonder C, Rechsteiner D, Ehrat M, Mestan J, Fabbro D, Voshol H (2009) Tracing pathway activities with kinase inhibitors and reverse phase protein arrays. Proteomics Clin Appl 3:412–422PubMedCrossRefGoogle Scholar
  49. Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liotta LA, Petricoin EF 3 (2003) Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 3:2085–2090PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Kinexus Bioinformatics CorporationVancouverCanada

Personalised recommendations