Array-CGH and SNP-Arrays, the New Karyotype

  • Karoly Szuhai


Array-comparative genomic hybridisation (array-CGH) and single nucleotide polymorphism array hybridisation (SNP-array) enable genome-wide detection of copy number alterations (CNA). These techniques outperform conventional chromosomal karyotyping in relation to detection of CNAs. The discovery of previously cryptic alterations associated with constitutional or acquired cytogenetic changes with DNA copy number gains or losses quickly led to the identification of novel syndromes or previously unseen tumour-related changes. Array platforms are often targeted to pathognomonic regions to detect well-characterised unbalanced chromosomal rearrangements. Platforms with genome-wide coverage detect additional CNA representing normal genomic variation (copy number variation: CNV) or variation with yet unknown significance. The use of SNP-array facilitating the detection of segmental uniparental disomies might be advantageous compared to classical array-CGH approaches. However, none of the array platforms permit the detection of balanced genomic rearrangements such as translocation, inversion or insertions or some polyploidies. The use of array platforms in cytogenetic testing quickly became a routine diagnostic tool and will replace conventional cytogenetic testing in many instances. In addition, these techniques have the potential to identify genomic changes relevant for the establishment of prognostic stratification of different neoplastic conditions.


Copy Number Alteration Single Nucleotide Polymorphism Array Copy Number Status Copy Number Alteration Molecular Karyotyping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albertson DG, Pinkel D (2003) Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 12(Spec No 2):R145–R152Google Scholar
  2. Ballif BC, Rorem EA, Sundin K, Lincicum M, Gaskin S, Coppinger J, Kashork CD, Shaffer LG, Bejjani BA (2006) Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet A 140:2757–2767PubMedGoogle Scholar
  3. Ballif BC, Hornor SA, Jenkins E, Madan-Khetarpal S, Surti U, Jackson KE, Asamoah A, Brock PL, Gowans GC et al (2007) Discovery of a previously unrecognized microdeletion syndrome of 16p11.2-p12.2. Nat Genet 39:1071–1073PubMedCrossRefGoogle Scholar
  4. Ballif BC, Theisen A, Coppinger J, Gowans GC, Hersh JH, Madan-Khetarpal S, Schmidt KR, Tervo R, Escobar LF et al (2008) Expanding the clinical phenotype of the 3q29 microdeletion syndrome and characterization of the reciprocal microduplication. Mol Cytogenet 1:8PubMedCrossRefGoogle Scholar
  5. Bonnet C, Andrieux J, Beri-Dexheimer M, Leheup B, Boute O, Manouvrier S, Delobel B, Copin H, Receveur A et al (2010) Microdeletion at chromosome 4q21 defines a new emerging syndrome with marked growth restriction, mental retardation and absent or severely delayed speech. J Med Genet 47:377–384PubMedCrossRefGoogle Scholar
  6. Borozdin W, Graham JM Jr, Bohm D, Bamshad MJ, Spranger S, Burke L, Leipoldt M, Kohlhase J (2007) Multigene deletions on chromosome 20q13.13-q13.2 including SALL4 result in an expanded phenotype of Okihiro syndrome plus developmental delay. Hum Mutat 28:830Google Scholar
  7. Cheung SW, Shaw CA, Scott DA, Patel A, Sahoo T, Bacino CA, Pursley A, Li J, Erickson R et al (2007) Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet A 143A:1679–1686PubMedCrossRefGoogle Scholar
  8. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, Williams C, Stalker H, Hamid R et al (2011) A copy number variation morbidity map of developmental delay. Nat Genet 43(9):838–846PubMedCrossRefGoogle Scholar
  9. Coppinger J, Alliman S, Lamb AN, Torchia BS, Bejjani BA, Shaffer LG (2009) Whole-genome microarray analysis in prenatal specimens identifies clinically significant chromosome alterations without increase in results of unclear significance compared to targeted microarray. Prenat Diagn 29:1156–1166PubMedCrossRefGoogle Scholar
  10. Edelmann L, Hirschhorn K (2009) Clinical utility of array CGH for the detection of chromosomal imbalances associated with mental retardation and multiple congenital anomalies. Ann NY Acad Sci 1151:157–166PubMedCrossRefGoogle Scholar
  11. Eichler EE, Nickerson DA, Altshuler D, Bowcock AM, Brooks LD, Carter NP, Church DM, Felsenfeld A, Guyer M et al (2007) Completing the map of human genetic variation. Nature 447:161–165PubMedCrossRefGoogle Scholar
  12. Emanuel BS, Saitta SC (2007) From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat Rev Genet 8:869–883PubMedCrossRefGoogle Scholar
  13. Faas BH, van der Burgt I, Kooper AJ, Pfundt R, Hehir-Kwa JY, Smits AP, de Leeuw N (2010) Identification of clinically significant, submicroscopic chromosome alterations and UPD in fetuses with ultrasound anomalies using genome-wide 250k SNP array analysis. J Med Genet 47:586–594Google Scholar
  14. Faas BH, Cirigliano V, Bui TH (2011) Rapid methods for targeted prenatal diagnosis of common chromosome aneuploidies. Semin Fetal Neonatal Med 16:81–87PubMedCrossRefGoogle Scholar
  15. Flint J, Knight S (2003) The use of telomere probes to investigate submicroscopic rearrangements associated with mental retardation. Curr Opin Genet Dev 13:310–316PubMedCrossRefGoogle Scholar
  16. Flint J, Wilkie AO, Buckle VJ, Winter RM, Holland AJ, McDermid HE (1995) The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nat Genet 9:132–140PubMedCrossRefGoogle Scholar
  17. Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, Aburatani H, Jones KW, Tyler-Smith C et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961PubMedCrossRefGoogle Scholar
  18. Goobie S, Knijnenburg J, Fitzpatrick D, Sharkey FH, Lionel AC, Marshall CR, Azam T, Shago M, Chong K et al (2008) Molecular and clinical characterization of de novo and familial cases with microduplication 3q29: guidelines for copy number variation case reporting. Cytogenet Genome Res 123:65–78PubMedCrossRefGoogle Scholar
  19. Kallioniemi A (2008) CGH microarrays and cancer. Curr Opin Biotechnol 19:36–40PubMedCrossRefGoogle Scholar
  20. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821PubMedCrossRefGoogle Scholar
  21. Kiholm Lund AB, Hove HD, Kirchhoff M (2008) A 15q24 microduplication, reciprocal to the recently described 15q24 microdeletion, in a boy sharing clinical features with 15q24 microdeletion syndrome patients. Eur J Med Genet 51:520–526PubMedCrossRefGoogle Scholar
  22. Kirchhoff M, Rose H, Lundsteen C (2001) High resolution comparative genomic hybridisation in clinical cytogenetics. J Med Genet 38:740–744PubMedCrossRefGoogle Scholar
  23. Knijnenburg J, Oberstein SA, Frei K, Lucas T, Gijsbers AC, Ruivenkamp CA, Tanke HJ, Szuhai K (2009) A homozygous deletion of a normal variation locus in a patient with hearing loss from non-consanguineous parents. J Med Genet 46:412–417PubMedCrossRefGoogle Scholar
  24. Koolen DA, Vissers LE, Pfundt R, Knight SJ, Regan R, Kooy RF, Reyneirs E, Romano C et al (2006) A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat Genet 38:999–1001PubMedCrossRefGoogle Scholar
  25. Lee C, Iafrate AJ, Brothman AR (2007) Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet 39:S48–S54PubMedCrossRefGoogle Scholar
  26. Lesnik Oberstein SA, Kriek M, White SJ, Kalf ME, Szuhai K, den Dunnen JT, Breuning MH, Hennekam RC (2006) Peters plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet 79:562–566PubMedCrossRefGoogle Scholar
  27. Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Sahoo T, Yatsenko SA et al (2007) Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One 2:e327PubMedCrossRefGoogle Scholar
  28. Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N (2011) What can exome sequencing do for you? J Med Genet 48:580–589PubMedCrossRefGoogle Scholar
  29. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764PubMedCrossRefGoogle Scholar
  30. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, White D, Hughes TP, Le Beau MM et al (2008) BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453:110–114PubMedCrossRefGoogle Scholar
  31. Neill NJ, Ballif BC, Lamb AN, Parikh S, Ravnan JB, Schultz RA, Torchia BS, Rosenfeld JA, Shaffer LG (2011) Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH. Genome Res 21:535–544PubMedCrossRefGoogle Scholar
  32. Ou Z, Berg JS, Yonath H, Enciso VB, Miller DT, Picker J, Lenzi T, Keegan CE, Sutton VR et al (2008) Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genet Med 10:267–277PubMedCrossRefGoogle Scholar
  33. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211PubMedCrossRefGoogle Scholar
  34. Potocki L, Bi W, Treadwell-Deering D, Carvalho CM, Eifert A, Friedman EM, Glaze D, Krull K, Lee JA et al (2007) Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 80:633–649PubMedCrossRefGoogle Scholar
  35. Raap AK, van der Burg MJ, Knijnenburg J, Meershoek E, Rosenberg C, Gray JW, Wiegant J, Hodgson JG, Tanke HJ (2004) Array comparative genomic hybridization with cyanin cis-platinum-labeled DNAs. Biotechniques 37:130–134PubMedGoogle Scholar
  36. Rajcan-Separovic E, Harvard C, Liu X, McGillivray B, Hall JG, Qiao Y, Hurlburt J, Hildebrand J, Mickelson EC et al (2007) Clinical and molecular cytogenetic characterisation of a newly recognised microdeletion syndrome involving 2p15-16.1. J Med Genet 44:269–276PubMedCrossRefGoogle Scholar
  37. Redon R, Baujat G, Sanlaville D, Le Merrer M, Vekemans M, Munnich A, Carter NP, Cormier-Daire V, Colleaux L (2006a) Interstitial 9q22.3 microdeletion: clinical and molecular characterisation of a newly recognised overgrowth syndrome. Eur J Hum Genet 14:759–767PubMedCrossRefGoogle Scholar
  38. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR et al (2006b) Global variation in copy number in the human genome. Nature 444:444–454PubMedCrossRefGoogle Scholar
  39. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A et al (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449PubMedCrossRefGoogle Scholar
  40. Shaffer LG, Bejjani BA (2011) Development of new postnatal diagnostic methods for chromosome disorders. Semin Fetal Neonatal Med 16:114–118PubMedCrossRefGoogle Scholar
  41. Shaffer LG, Bejjani BA, Torchia B, Kirkpatrick S, Coppinger J, Ballif BC (2007) The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. Am J Med Genet C Semin Med Genet 145C:335–345PubMedCrossRefGoogle Scholar
  42. Shaffer LG, Coppinger J, Alliman S, Torchia BA, Theisen A, Ballif BC, Bejjani BA (2008) Comparison of microarray-based detection rates for cytogenetic abnormalities in prenatal and neonatal specimens. Prenat Diagn 28:789–795PubMedCrossRefGoogle Scholar
  43. Shaffer LG, Coppinger J, Morton SA, Alliman S, Burleson J, Traylor R, Walker C, Byerly S, Lamb AN et al (2011) The development of a rapid assay for prenatal testing of common aneuploidies and microdeletion syndromes. Prenat Diagn 31:778–787PubMedCrossRefGoogle Scholar
  44. Sharp AJ, Selzer RR, Veltman JA, Gimelli S, Gimelli G, Striano P, Coppola A, Regan R, Price SM et al (2007) Characterization of a recurrent 15q24 microdeletion syndrome. Hum Mol Genet 16:567–572PubMedCrossRefGoogle Scholar
  45. Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE, Schroer RJ, Novara F, De Gregori M et al (2008) A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 40:322–328PubMedCrossRefGoogle Scholar
  46. Shaw-Smith C, Redon R, Rickman L, Rio M, Willatt L, Fiegler H, Firth H, Sanlaville D, Winter R et al (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–248PubMedCrossRefGoogle Scholar
  47. Shinawi M, Cheung SW (2008) The array CGH and its clinical applications. Drug Discov Today 13:760–770PubMedCrossRefGoogle Scholar
  48. Shinawi M, Erez A, Shardy DL, Lee B, Naeem R, Weissenberger G, Chinault AC, Cheung SW, Plon SE (2008) Syndromic thrombocytopenia and predisposition to acute myelogenous leukemia caused by constitutional microdeletions on chromosome 21q. Blood 112:1042–1047PubMedCrossRefGoogle Scholar
  49. Slavotinek AM (2008) Novel microdeletion syndromes detected by chromosome microarrays. Hum Genet 124:1–17PubMedCrossRefGoogle Scholar
  50. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, Cremer T, Lichter P (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407PubMedCrossRefGoogle Scholar
  51. Somerville MJ, Mervis CB, Young EJ, Seo EJ, Bamforth S, Peregrine E, Loo W, Lilley M et al (2005) Severe expressive-language delay related to duplication of the Williams-Beuren locus. N Engl J Med 353:1694–1701PubMedCrossRefGoogle Scholar
  52. Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792PubMedCrossRefGoogle Scholar
  53. Stankiewicz P, Beaudet AL (2007) Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 17:182–192PubMedCrossRefGoogle Scholar
  54. Szuhai K, Jennes I, Bovee JVMG, Wiwegar M, Wuyts W, Hogendoorn PCW (2011) Tiling resolution array-CGH shows that somatic mosaic deletion of the EXT gene is causative in EXT gene mutation negative multiple osteochondromas patients. Hum Mutat 32:E2036–E2049PubMedCrossRefGoogle Scholar
  55. Unger S, Bohm D, Kaiser FJ, Kaulfuss S, Borozdin W, Buiting K, Burfeind P, Bohm J, Barrionuevo F et al (2008) Mutations in the cyclin family member FAM58A cause an X-linked dominant disorder characterized by syndactyly, telecanthus and anogenital and renal malformations. Nat Genet 40:287–289PubMedCrossRefGoogle Scholar
  56. Van Esch H, Bauters M, Ignatius J, Jansen M, Raynaud M, Hollanders K, Lugtenberg D, Bienvenu T, Jensen LR et al (2005) Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet 77:442–453PubMedCrossRefGoogle Scholar
  57. Van Opstal D, Boter M, de Jong D, van den Berg C, Bruggenwirth HT, Wildschut HI, de Klein A, Galjaard RJ (2009) Rapid aneuploidy detection with multiplex ligation-dependent probe amplification: a prospective study of 4000 amniotic fluid samples. Eur J Hum Genet 17:112–121PubMedCrossRefGoogle Scholar
  58. Vermeesch JR, Melotte C, Froyen G, Van Vooren S, Dutta B, Maas N, Vermeulen S, Menten B, Speleman F et al (2005) Molecular karyotyping: array CGH quality criteria for constitutional genetic diagnosis. J Histochem Cytochem 53:413–422PubMedCrossRefGoogle Scholar
  59. Vissers LE, De Vries BB, Osoegawa K, Janssen IM, Feuth T, Choy CO, Straatman H, Van d V, Huys EH et al (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73:1261–1270PubMedCrossRefGoogle Scholar
  60. Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, De Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ et al (2004) Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 36:955–957PubMedCrossRefGoogle Scholar
  61. Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, van Lier B, Arts P, Wieskamp N et al (2010) A de novo paradigm for mental retardation. Nat Genet 42:1109–1112PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Molecular Cell BiologyLeiden University Medical CenterLeidenthe Netherlands

Personalised recommendations