The Electron and Atomic Structure

  • Salvatore Califano


In the nineteenth century, chemists and physicists had a completely different image of electricity. The chemists, in contact with a discontinuous and discrete world made of atoms and molecules that they handled and combined together at will in their laboratories, conceived electricity as made of charges indissolubly bound to matter and responsible for the affinities binding together the atoms in the molecules. Volta’s pile, which at first appeared to be just an instrument to break molecules into pieces, soon led to a new theoretical paradigm. The Arrhenius theory of electrolytic dissociation had in fact clearly proved that even the electrical charges of ions occurred in a discrete and discontinuous form, and in 1873 Maxwell had shown that the cations all carried a positive electrical charge, always a multiple of the same quantity, and that the same situation occurred for anions but with negative charges. The fact that ions carried a “definite quantity” of electrical charge had been reinforced by von Helmholtz in a famous Faraday Lecture held on 5 April 1881 at the Chemical Society in London (Helmholtz 1881):


Nobel Prize Pauli Exclusion Principle German Physicist External Shell Spin Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abegg R (1904) Die Valenz und das periodische System. Versuch einer Theorie der Molekularvebindungen. Z Anorg Chem 39:330CrossRefGoogle Scholar
  2. Abegg R, Bodländer G (1899) Die Elektroaffinität, ein neues Prinzip der. chemischen Systematik. Z Anorg Chem 20:453–499CrossRefGoogle Scholar
  3. Aepinus FUT (1759) Tentamen theoriae electricitatis et magnetismi. Accedunt dissertationes duae, quarum prior, phaenomenon quoddam electricum, altera, magneticum, explicat, auctore F.V.T. Aepino. Typis Academiae Scientiarum, PetropolisGoogle Scholar
  4. Balmer JJ (1885a) Notiz über die Spektrallinien des Wasserstoff. Ver Naturforsch Ges Basel Z 7:750–752Google Scholar
  5. Balmer JJ (1885b) Notiz über die Spectrallinien des Wasserstoffs. Ann Phys Chem 25:80–87Google Scholar
  6. Bohr N (1913a) On the constitution of atoms and molecules, Part I. Philos Mag 26:1–25CrossRefGoogle Scholar
  7. Bohr N (1913b) On the constitution of atoms and molecules. Part II. Systems containing only a single nucleus. Philos Mag 26:476–502CrossRefGoogle Scholar
  8. Bohr N (1913c) On the constitution of atoms and molecules. Part III. Systems containing several nuclei. Philos Mag 26:857–875CrossRefGoogle Scholar
  9. Bohr N (1921) Atomic structure. Nature 107:104–107CrossRefGoogle Scholar
  10. Bohr N (1922) The constitution of atoms and the physical and chemical properties of elements. Z Phys 9:1–67CrossRefGoogle Scholar
  11. Bury CR (1921) Langmuir’s theory of the arrangement of electrons in atoms and molecules. J Am Chem Soc 43:1602–1609CrossRefGoogle Scholar
  12. Crookes W (1879a) Contributions to molecular physics in high vacua. Magnetic deflection of molecular trajectory. Laws of magnetic rotation in high and low vacua. Phosphorogenic properties of molecular discharge. Philos Trans R Soc Lond 170:641–662CrossRefGoogle Scholar
  13. Crookes W (1879b) The Bakerian lecture: on the illumination of lines of molecular pressure, and the trajectory of molecules. Philos Trans R Soc Lond 170:135–164CrossRefGoogle Scholar
  14. Darwin CG (1914a) Collision of ∝ particles with light atoms. Philos Mag 27:499CrossRefGoogle Scholar
  15. Darwin CG (1914b) The theory of X-ray reflexion. Philos Mag 27:675CrossRefGoogle Scholar
  16. de Kronig LR, Rabi JJ (1927) The symmetrical top in the undulatory mechanics. Phys Rev 29:262–269CrossRefGoogle Scholar
  17. Falk KG, Nelson JM (1910) The electron conception of valence. J Am Chem Soc 32:1637–1654CrossRefGoogle Scholar
  18. Geiger H, Marsden E (1909) On a diffuse reflection of the α-particles. Proc R Soc (Lond) A82:495–500CrossRefGoogle Scholar
  19. Geiger H, Marsden E (1913) The laws of deflexion of a particles through large angles. Philos Mag 25:604–623CrossRefGoogle Scholar
  20. Goldstein E (1876) Vorläufige Mittheilungen über Elektrische Entladungen in verdünnten Gasen. Monatsbericht der Königlich Academie der Wissenschaften zu Berlin 279–95Google Scholar
  21. Goldstein E (1880) Über die Entladung der Elektricität in verdünnten Gasen. Monatsbericht der Königlich Academie der Wissenschaften zu Berlin 82–124Google Scholar
  22. Goldstein E (1886) Über eine noch nicht untersuchte Strahlunsform an der Kathode inducirter Entladungen. Sitzungsberichte der Königlichen Academie der Wissenschaften zu Berlin 693–97 Published on the Annalen der Physik Vol 300 Issue 1 pages 38–48, 1898Google Scholar
  23. Goudsmit S, de Kronig RL (1925) Die Intensität der Zeemankomponenten. Naturwissenschaften 13:90CrossRefGoogle Scholar
  24. Haas AE (1910) Über eine neue theorische Methode zur Bestimmung des elektrischen Elementarquantums des Wasserstoff atoms. Phys Z 11:537–538Google Scholar
  25. Hertz H (1892) Kathodenstrahlen durch dunne metalschichten. Annalen der Physik 45:28–32Google Scholar
  26. Hittorf W (1869) Über die Elektricitatsleitung der Gase. Ann Phys 136:1–31, 136:197CrossRefGoogle Scholar
  27. Kossel W (1916) Über Molekülbildung als Frage des Atombaus. Ann Phys 49:229–362CrossRefGoogle Scholar
  28. Kossel W (1920) Bemerkungen über Atomkräfte. Z Phys der Physik und Chemie 1:395–415CrossRefGoogle Scholar
  29. Kronig de Laer R Rabi JJ (1927) The Symmetrical Top in the Undulatory Mechanics Phys Rev 29:262–269Google Scholar
  30. Langmuir I (1906) Über partielle Wiedervereinigung dissociierter Gase im Verlauf einer Abkühlung. Thesis, “Göttingen” L. Hofer 1906Google Scholar
  31. Langmuir I (1919a) Isomorphisme, isosterism and covalence. J Am Chem Soc 41:1543–1559CrossRefGoogle Scholar
  32. Langmuir I (1919b) The arrangement of electrons in atoms and molecules. J Am Chem Soc 41:868CrossRefGoogle Scholar
  33. Langmuir I (1919c) The structure of atoms and the Octet theory of valence. Proc Natl Acad Sci 5:252CrossRefGoogle Scholar
  34. Langmuir I (1920) The Octet theory of valence and its applications with special reference to organic nitrogen compounds. J Am Chem Soc 42:274CrossRefGoogle Scholar
  35. Langmuir I, Orange JA (1913) Tungsten lamps of high efficiency. Gen Elec Rev 16:956Google Scholar
  36. Lénárd P (1893) Über Kathodenstrahlen in Gasen von atmosphärischem Druck und im äussersten Vacuum. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 1:3–7Google Scholar
  37. Lénárd P (1894) Über Kathodenstrahlen in Gasen von atmosphärischem Druck und im äussersten Vacuum. Ann Phys 287:225–267CrossRefGoogle Scholar
  38. Lewis GN (1907) Outlines of a new system of thermodynamic chemistry. Proc Am Acad 43:259CrossRefGoogle Scholar
  39. Lewis GN (1908) The osmotic pressure of concentrated solutions, and the laws of the perfect solution. J Am Chem Soc 30:668–683CrossRefGoogle Scholar
  40. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–786CrossRefGoogle Scholar
  41. Lewis GN (1923) Valence and the structure of atoms and molecules. The Chemical Catalogue Company, New YorkGoogle Scholar
  42. Lewis GN, Randall M (1923) Thermodynamics and the free energy of chemical substances. McGraw-Hill, New YorkGoogle Scholar
  43. Main Smith JD (1924a) Atomic structure. Chem Ind 43:323–325, 437, 548–549CrossRefGoogle Scholar
  44. Main Smith JD (1924b) Chemistry and atomic structure. E. Benn Ltd, LondonGoogle Scholar
  45. Main Smith JD (1925) The distribution of electrons in atoms. Philos Mag 50:878–879CrossRefGoogle Scholar
  46. Mayer AM (1878) Floating magnets. Nature 17:487Google Scholar
  47. Nagaoka H (1904) Kinetics of a system of particles illustrating the line and the band spectrum and the phenomena of radioactivity. Philos Mag 7:445CrossRefGoogle Scholar
  48. Nicholson J (1912) The constitution of the solar corona. Mon Not R Astron Soc 72:139, 677, 729Google Scholar
  49. Pauli W (1925) Über den Zussammenhang des Abschusses der Elektronengruppen in Atom mit der Komplexstruktur der Spektren. Z Phys 31:373, 765CrossRefGoogle Scholar
  50. Perrin J (1897) Rayon cathodiques et rayons de Röntgen. Ann Chim Phys 7:496–555Google Scholar
  51. Plucker J (1858) Auf die Einwirkung des Magneten auf die elektrischen Entladungen in verdünnten Gasen. Annalen der Physik Vol 179 Issue 1 151–157Google Scholar
  52. Righi A (1890) Sulle traiettorie percorse nella convezione fotoelettrica. Atti Accad Naz Lincei 6,Rendiconti, p. 81–86Google Scholar
  53. Righi A (1896) Sulla propagazione dell’elettricità nei gas attraversati dai raggi di Röntgens. Mem Accad Sci Bologna Serie V. Tomo VI., pp. 231–303Google Scholar
  54. Rutherford E (1911) The scattering of α and ß particles by matter and the structure of the atom. Philos Mag 21:669–688CrossRefGoogle Scholar
  55. Rutherford E, Royds T (1909) The nature of the α particle from radioactive substances. Philos Mag 17:281CrossRefGoogle Scholar
  56. Rydberg JR (1886) Die Gesetze der Atomgewichtzahlen, vol. 11. Svenska Vetenskaps Academiens Handlungar, P.A. Norsted & Söner Ed., Stockholm pp. 13Google Scholar
  57. Rydberg JR (1890) On the structure of the linespectra in the chemical elements. Philos Mag 29:331–337CrossRefGoogle Scholar
  58. Sommerfeld A (1916) Zur Quantentheorie der Spektrallinien. Ann Phys 51:1–94, 125–167CrossRefGoogle Scholar
  59. Sommerfeld A (1920) Allgemeine spektroskopische Gesetze, insbesondere ein magnetooptischer Zerlegungssatz. Ann Phys 63(2):221–263CrossRefGoogle Scholar
  60. Stoner EC (1924) The distribution of electrons among atomic levels. Philos Mag 48:719–736CrossRefGoogle Scholar
  61. Stoney GJ (1881) On the physical units of nature. Philos Mag 11:384Google Scholar
  62. Tait PG (1877) On knots. Trans R Soc Edinburgh 28:145–190Google Scholar
  63. Tait PG (1884) On knots, Part II. Trans R Soc Edinburgh 32:327–342Google Scholar
  64. Tait PG (1885) On knots, Part III. Trans R Soc Edinburgh 32:493–506Google Scholar
  65. Thomson W (1869) On vortex motion. Trans R Soc Edinburgh 25:217–260Google Scholar
  66. Thomson W (1875) Vortex statics. Proc R Soc Edinburgh 9:58–78Google Scholar
  67. Thomson JJ (1883) A treatise on the motion of vortex rings. Macmillan, LondonGoogle Scholar
  68. Thomson JJ (1885) The vortex ring theory of gases. On the law of the distribution of energy among the molecules. Proc R Soc Lond 39:23–36CrossRefGoogle Scholar
  69. Thomson JJ (1897) Cathode rays. Proc R Inst 15:419Google Scholar
  70. Thomson W (1901) Aepinus atomized. Archives néerlandaises des sciences exactes et naturelles 2:6Google Scholar
  71. Thomson W (1902) Aepinus atomized. Philos Mag 3:257CrossRefGoogle Scholar
  72. Thomson JJ (1904) On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philos Mag 7:237CrossRefGoogle Scholar
  73. Thomson JJ (1907a) The corpuscular theory of matter. Constable & Co., LondonGoogle Scholar
  74. Thomson JJ (1907b) On rays of positive electricity. Philos Mag (Series 6) 13:561CrossRefGoogle Scholar
  75. Uhlenbeck GE, Goudsmit S (1925) Ersetzung der Hypothese von unmechanischen Zwang durch eine Forderung bezügluch des inneren Verhaltens jedes ienzelnen Elektrons. Naturwissenschaften 13:953CrossRefGoogle Scholar
  76. Uhlenbeck GE, Goudsmit S (1926) Spinning electrons and the structure of spectra. Nature 117:264CrossRefGoogle Scholar
  77. von Helmholtz H (1858) Über Integrale der hydromechanischen Gleichung welche den Wirbelbewegungen entsprechen. J Reine Angew Math 55:25CrossRefGoogle Scholar
  78. von Helmholtz H (1881) On the modern development of Faraday’s conceptions of electricity. J Chem Soc 39:277CrossRefGoogle Scholar
  79. Wichelhaus H (1867) Über Constitution und Zusammenhang der organischen Säuren von 3 At. Kohlenstoff. Ann Chem 144:351–357CrossRefGoogle Scholar
  80. Wien W (1898) Untersuchungen über die elektrische Entladung in verdünnten Gasen. Ann Phys Chem 65:440Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Salvatore Califano
    • 1
  1. 1.Laboratorio Europeo di Spettroscopie nonUniversitá di FirenzeFirenzeItaly

Personalised recommendations