Chemical Physics Structural Techniques

  • Salvatore Califano


The prodigious growth of chemistry in the twentieth century would not have been possible without the development of chemical physics techniques allowing one to investigate molecular structures and dimensions and to define the relative positions of atoms in space, connecting molecular dynamics to reactivity and to energy transformations.


Nuclear Magnetic Resonance Electron Paramagnetic Resonance Nobel Prize Nuclear Spin Nuclear Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abney W, Festing ER (1881) The influence of the atomic grouping in the molecules of organic bodies on their absorption in the infra-red region of the spectrum. Philos Trans Roy Soc 172:887–918CrossRefGoogle Scholar
  2. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, Oxford/EnglandGoogle Scholar
  3. Alvarez LW, Bloch F (1940) A quantitative determination of the neutron moment in absolute nuclear magnetons. Phys Rev 57:122CrossRefGoogle Scholar
  4. Barkla CG (1904) Energy of secondary Röntgen radiation. Philos Mag 7:543–560CrossRefGoogle Scholar
  5. Basov NG and Prokhorov AM (1954) First Russian ammonia maser; in Russian Zh. Eksperim i Teor Fiz 27:431Google Scholar
  6. Basov NG, Prochorov AM (1954) Possible methods of obtaining active molecules for a molecular oscillator. Sov JETP 27:431–438, 28, 249, 1955Google Scholar
  7. Bellamy L (1958) Infrared spectra of complex molecules. Wiley, New YorkGoogle Scholar
  8. Bijvoet JM (1949) Phase determination in direct Fourier-synthesis of crystal structures. Proc K Ned Akad Wet B52:313–314Google Scholar
  9. Bijvoet JM (1951) X-ray analysis of crystals. Butterworths, LondonGoogle Scholar
  10. Bjerrum N (1914) The ultra-red spectra of gases. The configuration of the carbon dioxide molecule and the laws of intramolecular forces. Ber Deutch Phys Ges 116:737–753Google Scholar
  11. Bleaney B, Penrose RP (1946) Ammonia spectrum in the 1 cm. Wave-length region. Nature 157:339–340CrossRefGoogle Scholar
  12. Bloch F, Hansen WW, Packard ME (1946a) Nuclear induction. Phys Rev 70:460–473CrossRefGoogle Scholar
  13. Bloch F, Hansen WW, Packard M (1946b) The nuclear induction experiment. Phys Rev 70:474CrossRefGoogle Scholar
  14. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679CrossRefGoogle Scholar
  15. Bloembergen N (1956) Proposal for a new type solid state maser. Phys Rev 104:324CrossRefGoogle Scholar
  16. Bluhm MM, Bodo C, Dintzis HM, Kendrew JC (1958) The crystal structure of myoglobin. IV. A Fourier projection of sperm-whale myoglobin by the method of isomorphous replacement. Proc Roy Soc Lond A246:369Google Scholar
  17. Blume RJ (1958) Electron spin relaxation times in sodium-ammonia solutions. Phys Rev 109:1867CrossRefGoogle Scholar
  18. Bowers KD, Mims WB (1959) Paramagnetic relaxation in nickel fluosilicate. Phys Rev 115:285CrossRefGoogle Scholar
  19. Bragg WH, Bragg WL (1913a) The reflection of X-rays by crystals. Proc Roy Soc A88:428Google Scholar
  20. Bragg WH, Bragg WL (1913b) The structure of the diamond. Proc Roy Soc A89:277–291Google Scholar
  21. Bragg WL (1913a) The diffraction of short electromagnetic waves by a crystal. Proc Camb Philos Soc 17:43–57Google Scholar
  22. Bragg WL (1913b) The structure of some crystals as indicated by their diffraction of X-rays. Proc Roy Soc Lond A 89:248–277CrossRefGoogle Scholar
  23. Bragg WL (1914) The analysis of crystals by the X-ray spectrometer. Proc Roy Soc A89:468–489Google Scholar
  24. Brockhouse BN, Stewart AT (1958) Normal modes of aluminum by neutron spectrometry. Rev Mod Phys 30:236–249CrossRefGoogle Scholar
  25. Califano S (1976) Vibrational states. Wiley, LondonGoogle Scholar
  26. Califano S, Schettino V, Neto N (1981) Lattice dynamics of molecular crystals, Lecture notes in chemistry. Springer, New YorkCrossRefGoogle Scholar
  27. Cleeton CE, Williams NH (1933) A magnetostatic oscillator for the generation of 1 to 3 cm waves. Phys Rev 44:421CrossRefGoogle Scholar
  28. Cleeton CE, Williams NH (1934) Electromagnetic waves of 1.1 cm wave-length and the absorption spectrum of ammonia. Phys Rev 45:234CrossRefGoogle Scholar
  29. Crawford BL (1940) Infra‐red and Raman spectra of polyatomic molecules XII. Methyl acetylene. J Chem Phys 8:526CrossRefGoogle Scholar
  30. Davidson WL, Morton GA, Shull CG, Wollan EO (1947) Neutron diffraction analysis of NaH and NaD, vol 842, Report number MDDC. Oak Ridge, US Atomic Energy Commission (AEC), April 28Google Scholar
  31. Debye P, Scherrer P (1916) Interferenzen an regellos orientierten Teilchen im Röntgenlicht I. Phys Z 17:277–83Google Scholar
  32. Debye P, Scherrer P (1917) Interferenzen an regellos orientierten Teilchen im Röntgenlicht III (Über die Konstitution von Graphit und amorpher Kohle). Phys Z 18:291Google Scholar
  33. Dickinson WC (1950) Hartree computation of the internal diamagnetic field for atoms. Phys Rev 80:563CrossRefGoogle Scholar
  34. Einstein A (1917) Zur Quantentheorie der Strahlung. Phys Z 18:121–128Google Scholar
  35. Fraser GT, Lovas FJ, Suenram RD, Nelson DD, Klemperer W (1986) Rotational spectrum and structure of CF3H–NH3. Chem Phys 84:5983Google Scholar
  36. Friedrich W, Knipping P, Laue M (1912) Interferenz-Erscheinungen bei Röntgenstrahlen, Eine quantitative Prüfung der Theorie für den Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsberichte Bayer Akad Wiss 303–322; reprint in: Ann Phys (1913) 41:971–988Google Scholar
  37. Genzel L, Eckhardt W (1954) Spektraluntersuchungen im Gebiet um 1 mm Wellenlänge. Z Phys 139:578–591CrossRefGoogle Scholar
  38. Gordon JP, Zeiger HJ, Townes CH (1954a) Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys Rev 95:282CrossRefGoogle Scholar
  39. Gordon JP, Zeiger HJ, Townes CH (1954b) The maser–new type of microwave amplifier, frequency standard, and spectrometer. Phys Rev 99:1264CrossRefGoogle Scholar
  40. Gordon JP, Bowers KD (1958) Microwave spin echoes from donor electrons in silicon. Phys Rev Lett 1:368–369CrossRefGoogle Scholar
  41. Gordy W (1948) Microwave spectroscopy. Rev Mod Phys 20:668–717CrossRefGoogle Scholar
  42. Hahn E (1950) Spin echoes. Phys Rev 80:580CrossRefGoogle Scholar
  43. Hartley WN, Huntingdon AK (1879) Spectra of organic compounds. Proc Roy Soc 28:233Google Scholar
  44. Hauptman H, Karle J (1956) Structure invariant and semivariants for non-centrosymmetric space groups. Acta Cyst 9:45–55CrossRefGoogle Scholar
  45. Herschbach DR (1956) Internal barrier of propylene oxide from the microwave. Spectrum, I. J Chem Phys 25:358CrossRefGoogle Scholar
  46. Hull AW (1917) A new method of X-ray crystal analysis. Phys Rev 10:661–696CrossRefGoogle Scholar
  47. Kemble E (1916) The distribution of angular velocities among diatomic gas. Phys Rev 8:689CrossRefGoogle Scholar
  48. Kopfermann H, Ladenburg R (1928) Bildung und Vernichtung angeregter Atome. Z Phys 48:26–50CrossRefGoogle Scholar
  49. Landsberg GS, Mandelstam LI (1928) Über die Lichtzerstreuung in Kristallen. Z Phys 50:769–780CrossRefGoogle Scholar
  50. Laue M (von) Ph.D., Universität Berlin (1903) Über die Interferenzerscheinungen an planparallelen Platten. Ann Phys 318:163181, 1904Google Scholar
  51. Laue M (1912) Eine quantitative Prüfung der Theorie für die Interferenzerscheinungen bei Röntgenstrahlen. Berichte Bav Acad Sci 363–373 reprinted in Ann. Phys. (1913), 41, 989-1002Google Scholar
  52. Leomte LJ (1928) Spectre Infrarouge. Les Presses Universitaires, ParisGoogle Scholar
  53. Lide DR Jr (1959) Microwave spectrum of trimethylarsine. Spectrochim Acta 15:473–476CrossRefGoogle Scholar
  54. Mensing L (1926) The rotational-oscillation bands according to quantum mechanics. Z Phys 36:814CrossRefGoogle Scholar
  55. Mensing L (1927) Zur Theorie des Zusammenstoßes von Atomen mit langsamen Elektronen. Z Phys 45:603–609CrossRefGoogle Scholar
  56. Mims WB, Nassau K, McGee JD (1961) Spectral diffusion in electron resonance lines. Phys Rev 123:2059–2069CrossRefGoogle Scholar
  57. Myers RJ, Gwinn WD (1954) The microwave spectra of gases. Annu Rev Phys Chem 5:385–394CrossRefGoogle Scholar
  58. Nakagawa I, Mizushima S (1953) The assignments of the Raman and infrared frequencies of 1,2-Dichloroethane observed in the gaseous, liquid and solid states. J Chem Phys 21:2195–2198CrossRefGoogle Scholar
  59. Oppenheimer R (1925–1927) On the quantum theory of vibration-rotation bands. Proc Camb Philos Soc 23:327–335CrossRefGoogle Scholar
  60. Patterson AL (1934) A Fourier series method for the determination of the components of interatomic distances in crystals. Phys Rev 46:372–376CrossRefGoogle Scholar
  61. Peerdeman AF, van Bommel AJ, Bijvoet JM (1951) Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168:271CrossRefGoogle Scholar
  62. Perutz MF (1956) Isomorphous replacement and phase determination in non-centrosymmetric space groups. Acta Crystallogr 9:867CrossRefGoogle Scholar
  63. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North ACT (1960) Structure of haemoglobin. A three-dimensional Fourier synthesis at 5.5Å resolution, obtained by X-ray analysis. Nature 185:416–422CrossRefGoogle Scholar
  64. Placzek G (1929) Zur Theorie des Ramaneffekts. Z Phys 58:585–594CrossRefGoogle Scholar
  65. Porto SPS, Wood DL (1962) Ruby optical maser as a Raman source. J Opt Soc Am 52:251–152CrossRefGoogle Scholar
  66. Proctor WG, Yu FC (1950) The dependence of a nuclear magnetic resonance frequency upon chemical compounds. Phys Rev 77:717CrossRefGoogle Scholar
  67. Puluj I (1899) Radiant elektrode matter and the so called fourth state. Lond Phys Mem 1:233–331Google Scholar
  68. Purcell EM, Torrey HC, Pound CV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38CrossRefGoogle Scholar
  69. Rabi II, Cohen VW (1933) The nuclear spin of sodium. Phys Rev 43:582CrossRefGoogle Scholar
  70. Rabi II (1937) Space quantization in a gyrating magnetic field. Phys Rev 51:652–54CrossRefGoogle Scholar
  71. Rabi II, Zacharias JR, Millman S, Kusch P (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53:318CrossRefGoogle Scholar
  72. Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501CrossRefGoogle Scholar
  73. Ramsey NF (1950) Magnetic shielding of nuclei in molecules. Phys Rev 78:699–703CrossRefGoogle Scholar
  74. Rasetti F (1940) Scattering of thermal neutrons by crystals. Phys Rev 58:321–325CrossRefGoogle Scholar
  75. Röntgen WC (1895) Über eine neue Art von Strahlen. Ann Phys 300:1–11CrossRefGoogle Scholar
  76. Röntgen WC (1896) On a new kind of rays. Nature 53:274–276Google Scholar
  77. Rubens H (1894) Zur Dispersion der ultraroten Strahlen im Fluorit. Ann Phys 51:381–391CrossRefGoogle Scholar
  78. Shimanouchi T, Suzuki I (1961) Force constants of chloro- and bromomethanes. J Mol Spectrosc 6:277–300CrossRefGoogle Scholar
  79. Shimanouchi T (1972) Tables of Molecular Vibrational Frequencies Consolidated Volume II J Phys Chem Ref Data 6, 3:993–1102Google Scholar
  80. Smekal A (1923) Zur Quantentheorie der Dispersion. Die Naturwiss 43:873–875CrossRefGoogle Scholar
  81. Sommerfeld A (1912) Über die Beugung der Röntgenstrahlung. Ann Phys 38:473–506CrossRefGoogle Scholar
  82. Sommerfeld A (1913) Unsere gegenwärtigen Anschauungen über Röntgenstrahlung. Vortrag bei der Versammlung des Vereins zur Förderung des Unterrichtes in der Mathematik und den Naturwissenschaften, München. Gehalten Pfingsten 1913. Die Naturwissenschaften, 1:705–713Google Scholar
  83. Sommerfeld A (1915) Über das Spektrum der Röntgenstrahlung. Ann Phys 46:721–748CrossRefGoogle Scholar
  84. Sommerfeld A, Schönflies A (1928–1929) Jahrbuch der bayerischen Akademie der Wissenschaften. Schoenflies, Spencer, pp 86–87Google Scholar
  85. Stoicheff BP (1963) Theory of stimulated Brillouin and Raman scattering in gases. Phys Lett 7:186CrossRefGoogle Scholar
  86. Swalen JD, Herschbach DR (1957) Internal barrier of propylene oxide from the microwave spectrum, I. J Chem Phys 27:100–108CrossRefGoogle Scholar
  87. van Vleck JH, Hill EL (1928) On the quantum mechanics of the rotational distortion of molecular spectral terms. Phys Rev 32:250–272CrossRefGoogle Scholar
  88. van Vleck JH (1935) The rotational energy of polyatomic molecules. Phys Rev 47:487–494CrossRefGoogle Scholar
  89. Welsh HL, Crawford MF, Thomas TR, Love GR (1952) Raman spectroscopy of low-pressure gases and vapors. Can J Phys 30:577CrossRefGoogle Scholar
  90. Weyl H (1927) Quantenmechanik und Gruppentheorie. Z Phys 46:1–46CrossRefGoogle Scholar
  91. Weyl H (1928) Gruppentheorie und Quantenmechanik. Verlag S. Hirzel, LeipzigGoogle Scholar
  92. Wigner EP (1931) Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Verlag, BraunschweigGoogle Scholar
  93. Wilson EB Jr, Howard JB (1936) The vibration rotation energy levels of polyatomic molecules.I. Mathematical theory of semirigid asymmetrical top molecules. J Chem Phys 4:260–268CrossRefGoogle Scholar
  94. Wilson EB Jr (1941) Some mathematical methods for the study of molecular vibrations. J Chem Phys 9:76–84CrossRefGoogle Scholar
  95. Wilson EB Jr, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New YorkGoogle Scholar
  96. Wilson EB Jr (1957) On the origin of potential barriers to internal rotation in molecules. PNAS 43:816–820CrossRefGoogle Scholar
  97. Žáček A (1924) Nová metoda k vytvorení netlumenych oscilací [New method of generating undamped oscillations], Časopis pro pěstování matematiky a fysiky [Journal for the Cultivation of Mathematics and Physics] 53:378–380Google Scholar
  98. Zavoisky E (1945a) Relaxation of liquid solutions for perpendicular fields. J Phys USSR 9:211–216Google Scholar
  99. Zavoisky E (1945b) Spin-magnetic resonance in paramagnetics. J Phys USSR 9:245Google Scholar
  100. Zavoisky E (1946) Spin magnetic resonance in the decimetre-wave region. J Phys USSR 10:197–198Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Salvatore Califano
    • 1
  1. 1.Laboratorio Europeo di Spettroscopie nonUniversitá di FirenzeFirenzeItaly

Personalised recommendations