The National Cancer Institute and Natural Product-Based Drug Discovery in Africa

  • John A. Beutler
  • Gordon M. Cragg
  • David J. Newman
Chapter

Abstract

In the experience of the US National Cancer Institute, African biodiversity has been the source of several promising anticancer drugs. Analogues of the combretastatins are in advanced clinical trials, while conjugates of maytansine analogues with trastuzumab are showing great promise in the treatment of HER2-positive forms of breast cancer which have proved resistant to treatment with trastuzumab and lapatinib. Since 1987, the NCI, through contracts with Missouri Botanical Garden and Coral Reef Research Foundation, has undertaken plant and marine organism collections, respectively, in several African countries. In most instances, agreements based on the NCI Letter of Collection or Memorandum of Understanding were signed with the source-country authorities or qualified organizations, but in two cases where such agreements were not finalized, the necessary collection and export permits were obtained, and the NCI is totally committed to the terms of the LOC. The discovery of the anti-HIV-active compound michellamine B has emphasized the need for source countries to establish policies governing the exploration of their biological diversity for the discovery and development of novel bioactive molecules.

Keywords

Source Country Preclinical Development Renal Cancer Cell Line Contract Collection Cameroon Government 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CA1P

Combretastatin A-1 phosphate

CA4P

Combretastatin A-4 phosphate

CBD

United Nations Convention on Biological Diversity

CNARP

Centre National D’Applications des Recherches Pharmaceutiques, Madagascar

CSIR

South African Council for Scientific and Industrial Research

DCTD

Division of Cancer Treatment and Diagnosis

DM1 and DM4

Maytansanoid derivatives conjugated to carrier molecules

DTP

Developmental Therapeutics Program, formerly Cancer Chemotherapy National Service Center (CCNSC)

FDA

US Food and Drug Administration

HIV

Human Immunodeficiency Virus

LOC

NCI Letter of Collection

MaB

Monoclonal Antibody

MDR

Multidrug Resistance

MBG

Missouri Botanical Garden

MOU

NCI Memorandum of Understanding

NCI

US National Cancer Institute

NIDDK

National Institute for Diabetes Digestive and Kidney Diseases, NIH

NIH

US National Institutes of Health

NPB

DTP Natural Products Branch

NPR

Natural Products Repository Frederick, Maryland, USA

OTT

NIH Office of Technology Transfer

SCG

Source-Country Government

SCO

Source-Country Scientific Organization

USDA

US Department of Agriculture

Notes

Acknowledgments

The authors gratefully acknowledge the collaboration of the permitting authorities in source countries where collections for the NCI were performed, both in the early (1960–1982) and more recent (1986–present) programs. These include Cameroon, Central African Republic, Ethiopia, Gabon, Ghana, Kenya, Madagascar, South Africa, Tanzania, and Zimbabwe.

References

  1. 1.
    Cragg GM, Newman DJ (2005) International collaboration in drug discovery and development from natural sources. Pure Appl Chem 77:1923–1942CrossRefGoogle Scholar
  2. 2.
    Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100(1–2):72–79CrossRefGoogle Scholar
  3. 3.
    Cragg GM, Newman DJ (2009) Nature: a vital source of leads for anticancer drug development. Phytochem Rev 8:313–331CrossRefGoogle Scholar
  4. 4.
    Kaufman D (1993) Botany 2000-ASIA. Newsletter 2:6Google Scholar
  5. 5.
    Hartwell JL (1982) Plants used against cancer. Quarterman, Lawrence, MAGoogle Scholar
  6. 6.
    Cragg GM, Boyd MR, Cardellina JH II et al (1994) Ethnobotany and drug discovery: the experience of the US National Cancer Institute. In: Chadwick DJ, Marsh J (eds) Ethnobotany and the search for new drugs, vol 185, Ciba Foundation Symposium. Wiley, Chichester, pp 178–196Google Scholar
  7. 7.
    Cirla A, Mann J (2003) Combretastatins: from natural products to drug discovery. Nat Prod Rep 20:558–564CrossRefGoogle Scholar
  8. 8.
    Pinney KG, Pettit GR, Trawick ML et al (2011) The discovery and development of the combretastatins. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC/Taylor and Francis, Boca Raton, FL, Chapter 3Google Scholar
  9. 9.
    Siemann DW, Chaplin DJ, Walicke PA (2009) A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs 18:189–197CrossRefGoogle Scholar
  10. 10.
    Eichler W, Yafai Y, Wiedemann P et al (2006) Antineovascular agents in the treatment of eye diseases. Curr Pharm Design 12:2645–60CrossRefGoogle Scholar
  11. 11.
    Li Q, Sham HL (2002) Discovery and development of antimitotic agents that inhibit tubulin polymerisation for the treatment of cancer. Expert Opin Ther Pat 12:1663–1702CrossRefGoogle Scholar
  12. 12.
    Teicher BA (2009) Antibody-drug conjugate targets. Curr Cancer Drug Targ 9:982–1004CrossRefGoogle Scholar
  13. 13.
    Senter PD (2009) Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 13:235–244CrossRefGoogle Scholar
  14. 14.
    Zhiqiang A (ed) (2009) Therapeutic monoclonal antibodies: from the bench to the clinic. Wiley, Hoboken, NJGoogle Scholar
  15. 15.
    Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14:529–537CrossRefGoogle Scholar
  16. 16.
    Caravella J, Lugovskoy A (2010) Design of next-generation protein therapeutics. Curr Opin Chem Biol 14:520–528CrossRefGoogle Scholar
  17. 17.
    Yu T-W, Floss HG, Cragg GM et al (2011) Ansamitocins (maytansinoids). In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC/Taylor and Francis, Boca Raton, FL, Chapter 17Google Scholar
  18. 18.
    Cassady JM, Chan KK, Floss HG et al (2004) Recent developments in the Maytansanoid antitumor agents. Chem Pharm Bull 52:1–26CrossRefGoogle Scholar
  19. 19.
    Lambert JM (2010) Antibody-maytansinoid conjugates: a new strategy for the treatment of cancer. Drugs Future 35:471–80Google Scholar
  20. 20.
    Mita MM, Ricart AD, Mita AC et al (2007) A phase I study of a CanAg-targeted immunoconjugate, huC242-DM4, in patients with Can Ag-expressing solid tumors. J Clin Oncol 25(18S):3062Google Scholar
  21. 21.
    Beeram M, Krop I, Modi S et al (2007) A phase I study of trastuzumab-MCC-DM1 (T-DM1), a first-in-class HER2 antibody-drug conjugate (ADC), in patients (pts) with HER2+ metastatic breast cancer (BC). J Clin Oncol 25(18S):1042Google Scholar
  22. 22.
    Hughes B (2010) Antibody-drug conjugates for cancer: poised to deliver? Nat Rev Drug Discov 9:665–667CrossRefGoogle Scholar
  23. 23.
    Niculescu-Duvaz I (2010) Trastuzumab emtansine, an antibody-drug conjugate for the treatment of HER2+ metastatic breast cancer. Curr Opin Mol Ther 12:350–360Google Scholar
  24. 24.
    Ratnayake R, Covell D, Ransom TT et al (2009) Englerin A, a selective inhibitor of renal cancer cell growth, from Phyllanthus engleri. Org Lett 11:57–60CrossRefGoogle Scholar
  25. 25.
    Willot M, Radtke L, Könning D et al (2009) Total synthesis and absolute configuration of the guaiane sesquiterpene englerin A. Angew Chem Int Ed Engl 48:9105–9108CrossRefGoogle Scholar
  26. 26.
    Nicolaou KC, Kang Q, Ng SY et al (2010) Total synthesis of englerin A. J Am Chem Soc 132:8219–8222CrossRefGoogle Scholar
  27. 27.
    Molawai K, Delpont N, Echavarren AM (2010) Enantioselective synthesis of (-)-englerins A and B. Angew Chem Int Ed Engl 49:3517–3519CrossRefGoogle Scholar
  28. 28.
    Zhou Q, Chen X, Ma D (2010) Asymmetric, protecting-group-free total synthesis of (-)-englerin A. Angew Chem Int Ed Engl 49:3513–3515CrossRefGoogle Scholar
  29. 29.
    Li Z, Nakashige M, Chain WJ (2011) A brief synthesis of (-)-englerin A. J Am Chem Soc 133:6553–6556CrossRefGoogle Scholar
  30. 30.
    Chan KP, Chen DY (2011) Chemical synthesis and biological evaluation of the englerin analogues. ChemMedChem 6:420–423CrossRefGoogle Scholar
  31. 31.
    Radtke L, Willot M, Sun H et al (2011) Total synthesis and biological evaluation of (-)-englerin A and B: synthesis of analogues with improved activity profile. Angew Chem Int Ed Engl 50:1–6CrossRefGoogle Scholar
  32. 32.
    Ushakov DB, Navickas V, Ströbele M et al (2011) Total synthesis and biological evaluation of (-)-9-deoxy-englerin A. Org Lett 13:2090–2093CrossRefGoogle Scholar
  33. 33.
    Sourbier C, Ratnayake R, Scroggins B et al (2011) Targeting renal carcinoma with englerin A. AACR Annual Meeting, abstract 959Google Scholar
  34. 34.
    Beutler JA, Jato JG, Cragg GM et al (2006) The schweinfurthins. Issues in development of a plant-derived anticancer lead. In: Bogers J, Craker LE, Langa D (eds) Medicinal and aromatic plants. Springer, Amsterdam, Chapter 22Google Scholar
  35. 35.
    Thoison O, Hnawia E, Guéritte-Voegelein F (1992) Vedelianin, a hexahydroxanthene derivative isolated from Macaranga vedeliana. Phytochemistry 31:1439–1442CrossRefGoogle Scholar
  36. 36.
    Beutler JA, Shoemaker RH, Johnson T et al (1998) Cytotoxic geranyl stilbenes from Macaranga schweinfurthii. J Nat Prod 61:1509–1512CrossRefGoogle Scholar
  37. 37.
    Yoder B, Norris A, Miller JS et al (2006) Cytotoxic prenylated stilbenes and Flavonoids from Macaranga alnifolia from the Madagascar rain forest. J Nat Prod 70:342–346CrossRefGoogle Scholar
  38. 38.
    Klausmeyer P, Van QN, Jato JG et al (2010) Schweinfurthins I and J from Macaranga schweinfurthii. J Nat Prod 73:479–481CrossRefGoogle Scholar
  39. 39.
    Neighbors JD, Beutler JA, Wiemer DF (2005) Synthesis of nonracemic 3-deoxyschweinfurthin. J Org Chem 70:925–931CrossRefGoogle Scholar
  40. 40.
    Neighbors JD, Salnikova MS, Beutler JA et al (2006) Synthesis and structure-activity studies of schweinfurthin B analogs: evidence for the importance of a D-ring hydrogen bond donor in expression of differential cytotoxicity. Bioorg Med Chem 14:1771–1784CrossRefGoogle Scholar
  41. 41.
    Mente NR, Wiemer AJ, Neighbors JD et al (2007) Total synthesis of (R, R, R)- and (S, S, S)-schweinfurthin F: differences of bioactivity in the enantiomeric series. Bioorg Med Chem Lett 17:911–15CrossRefGoogle Scholar
  42. 42.
    Topczewski JJ, Neighbors JD, Wiemer DF (2009) Total synthesis of (+)- schweinfurthins B and E. J Org Chem 74:6965–6972CrossRefGoogle Scholar
  43. 43.
    Mente NR, Neighbors JD, Wiemer DF (2008) BF3 · Et2O-mediated cascade cyclizations: synthesis of schweinfurthins F and G. J Org Chem 73:7963–7970CrossRefGoogle Scholar
  44. 44.
    Kuder CH, Neighbors JD, Hohl RJ et al (2009) Synthesis and biological activity of a fluorescent schweinfurthin analogue. Bioorg Med Chem 17:4718–4723CrossRefGoogle Scholar
  45. 45.
    Ulrich NC, Kodet JG, Mente NR et al (2010) Structural analogues of schweinfurthin F: probing the steric, electronic and hydrophobic properties of the D-ring substructure. Bioorg Med Chem 18:1676–1683CrossRefGoogle Scholar
  46. 46.
    Topczewski JJ, Wiemer DF (2011) First total synthesis of (+)-vedelianin, a potent antiproliferative agent. Tetrahedron Lett 52:1628–1630CrossRefGoogle Scholar
  47. 47.
    Topczewski JJ, Kodet JG, Wiemer DF (2011) Exploration of cascade cyclizations terminated by tandem aromatic substitution: total synthesis of (+)-schweinfurthin A. J Org Chem 76:909–919CrossRefGoogle Scholar
  48. 48.
    Turbyville TJ, Gürsel DB, Tuskan RG et al (2010) Schweinfurthin A selectively inhibits proliferation and Rho signaling in glioma and neurofibromatosis type 1 tumor cells in an NF1-GRD dependent manner. Mol Cancer Ther 9:1234–124345CrossRefGoogle Scholar
  49. 48a.
    Burgett AW, Poulsen TB, Wangkanont K, Anderson DR, Kikuchi C, Shimada K, Okubo S, Fortner KC, Mimaki Y, Kuroda M, Murphy JP, Schwalb DJ, Petrella EC, Cornella-Taracido I, Schirle M, Tallarico JA, Shair MD (2011) Natural roducts reveal cancer cell dependence on oxysterol-binding proteins. Nat. Chem. Biol 7 (9):639–647CrossRefGoogle Scholar
  50. 48b.
    Holstein SA, Kuder CH, Tong H, Hohl RJ (2011) Pleiotropic effects of a schweinfurthin on isoprenoid homeostasis. Lipids 46(10):907–921CrossRefGoogle Scholar
  51. 49.
    Fojo T, Bates S (2003) Strategies for reversing drug resistance. Oncogene 22:7512–7523Google Scholar
  52. 50.
    Silva GL, Cui B, Chávez D et al (2001) Modulation of the multidrug-resistance phenotype by new tropane alkaloid aromatic esters from Erythroxylum pervillei. J Nat Prod 64:1514–1520CrossRefGoogle Scholar
  53. 51.
    Mi Q, Cui B, Silva GL (2003) Characterization of tropane alkaloid aromatic esters that reverse the multidrug-resistance phenotype. Anticancer Res 23:3607–3616Google Scholar
  54. 52.
    Chin YW, Jones WP, Waybright TJ et al (2006) Tropane aromatic ester alkaloids from a large-scale re-collection of Erythroxylum pervillei stem bark obtained in Madagascar. J Nat Prod 69:414–417CrossRefGoogle Scholar
  55. 53.
    Chin YW, Kinghorn AD, Patil PN (2007) Evaluation of the cholinergic and adrenergic effects of two tropane alkaloids from Erythroxylum pervillei. Phytochem Res 21:1002–1005Google Scholar
  56. 54.
    Magadula JJ, Erasto P (2009) Bioactive natural products derived from the East African Flora. Nat Prod Rep 26:1535–1554CrossRefGoogle Scholar
  57. 55.
    Pettit GR, Zhang Q, Pinilla V et al (2005) Antineoplastic agents. 534. Isolation and structure of sansevistatins 1 and 2 from the African Sansevieria ehrenbergii. J Nat Prod 68:729–733CrossRefGoogle Scholar
  58. 56.
    Chang FR, Hayashi K, Chen IH et al (2003) Antitumor agents 228. Five new agarofurans, reissantins A−E, and cytotoxic principles from Reissantia buchananii. J Nat Prod 66:1416–1420CrossRefGoogle Scholar
  59. 57.
    Sakurai Y, Sakurai N, Taniguchi M et al (2006) Rautandiols A and B, pterocarpans and cytotoxic constituents from Neorautanenia mitis. J Nat Prod 69:397–399CrossRefGoogle Scholar
  60. 58.
    Su BN, Park EJ, Mbwambo ZH et al (2002) New chemical constituents of Euphorbia quinquecostata and absolute configuration assignment by a convenient Mosher ester procedure carried out in NMR tubes. J Nat Prod 65:1278–1282CrossRefGoogle Scholar
  61. 59.
    Chin YW, Mdee LK, Mbwambo ZH et al (2006) Prenylated flavonoids from the root bark of Berchemia discolor, a Tanzanian medicinal plant. J Nat Prod 69:1649–1652CrossRefGoogle Scholar
  62. 60.
    Manfredi KP, Blunt JW, Cardellina JH II et al (1991) Novel alkaloids from the tropical plant Ancistrocladus abbreviatus inhibit cell-killing by HIV-1 and HIV-2. J Med Chem 34:3402–3405CrossRefGoogle Scholar
  63. 61.
    Boyd MR, Hallock YF, Cardellina JH II et al (1994) Anti-HIV michellamines from Ancistrocladus korupensis. J Med Chem 37:1740–1745CrossRefGoogle Scholar
  64. 62.
    McMahon JB, Currens MJ, Gulakowski RJ et al (1995) Michellamine B, a novel plant alkaloid, inhibits human immunodeficiency virus-induced cell killing by at least two distinct mechanisms. Antimicrob Agents Chemother 39:484–8CrossRefGoogle Scholar
  65. 63.
    Thomas DW, Gereau RE (1993) Ancistrocladus korupensis (Ancistrocladaceae): a new species of liana from Cameroon. Novon 3:494–498CrossRefGoogle Scholar
  66. 64.
    Thomas DW, Boyd MR, Cardellina JH II et al (1994) Sustainable harvest of Ancistrocladus korupensis (Ancistrocladaceae). Leaf litter for research on HIV. Econ Bot 48:313–414CrossRefGoogle Scholar
  67. 65.
    Hallock YF, Manfredi KP, Blunt JW et al (1994) Korupensamines A-D, novel antimalarial alkaloids from Ancistrocladus korupensis. J Org Chem 59:6349–6355CrossRefGoogle Scholar
  68. 66.
    Hallock YF, Manfredi KP, Dai JR et al (1997) Michellamines D-F, new HIV-inhibitory dimeric naphthylisoquinoline alkaloids, and korupensamine E, a new antimalarial monomer, from Ancistrocladus korupensis. J Nat Prod 60:677–683CrossRefGoogle Scholar
  69. 67.
    White EL, Ross LJ, Hobbs PD et al (1999) Antioxidant activity of michellamine alkaloids. Anticancer Res 19:1033–5Google Scholar
  70. 68.
    White EL, Chao WR, Ross LJ et al (1999) Michellamine alkaloids inhibit protein kinase C. Arch Biochem Biophys 365:25–30CrossRefGoogle Scholar
  71. 69.
    Deschamps JD, Gautschi JT, Whitman S et al (2007) Discovery of platelet- type 12-human lipoxygenase selective inhibitors by high-throughput screening of structurally diverse libraries. Bioorg Med Chem 15:6900–8CrossRefGoogle Scholar
  72. 70.
    Samuelsson B, Dahlen SE, Lindgren JA et al (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237:1171–1176CrossRefGoogle Scholar
  73. 71.
    Ford-Hutchinson AW, Gresser M, Young RN (1994) 5-Lipoxygenase. Annu Rev Biochem 63:383–417CrossRefGoogle Scholar
  74. 72.
    Bringmann G, Götz R, Keller PA et al (1998) A convergent total synthesis of the michellamines. J Org Chem 63:1090–1097CrossRefGoogle Scholar
  75. 73.
    Bringmann G, Götz R, Harmsen S et al (1996) Acetogenic isoquinoline alkaloids, LXXXII. Biomimetic total synthesis of michellamines A–C. Liebigs Annalen 1996:2045–2058CrossRefGoogle Scholar
  76. 74.
    Jato J, Simon JE, Symonds P et al (1996) Rules and regulations on the collection in Cameroon of biological materials for biological testing and drug discovery. J Ethnopharmacol 51:121–125CrossRefGoogle Scholar
  77. 75.
    Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238CrossRefGoogle Scholar
  78. 76.
    Newman DJ, Cragg GM (2004) Advanced preclinical and clinical trials of natural products and related compounds from marine Sources. Curr Med Chem 11:1693–1714CrossRefGoogle Scholar
  79. 77.
    Flahive E, Srirangam J (2011) The dolastatins: novel antitumor agents from Dolabella auricularia. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC/Taylor and Francis, Boca Raton, FL, Chapter 11Google Scholar
  80. 78.
    Andersen RJ, Roberge M (2011) A synthetic analog of the antimitotic natural product hemiasterlin. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products, 2nd edn. CRC/Taylor and Francis, Boca Raton, FL, Chapter 14Google Scholar
  81. 79.
    Pettit GR, Inoue M, Kamano Y et al (1988) Antineoplastic agents. 147. Isolation and structure of the powerful cell growth inhibitor cephalostatin 1. J Am Chem Soc 110:2006–2007CrossRefGoogle Scholar
  82. 80.
    Moser BR (2008) Review of cytotoxic cephalostatins and ritterazines: isolation and synthesis. J Nat Prod 71:487–491CrossRefGoogle Scholar
  83. 81.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefGoogle Scholar
  84. 82.
    Newman DJ, Cragg GM, Holbeck D et al (2002) Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr Cancer Drug Targets 2:279–308CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • John A. Beutler
    • 1
  • Gordon M. Cragg
    • 2
  • David J. Newman
    • 2
  1. 1.Molecular Targets Laboratory, Center for Cancer ResearchFrederickUSA
  2. 2.Natural Products Branch, Developmental Therapeutics ProgramFrederickUSA

Personalised recommendations