Nanomedicine in the Development of Drugs for Poverty-Related Diseases

  • Rose Hayeshi
  • Boitumelo Semete
  • Lonji Kalombo
  • Lebogang Katata
  • Yolandy Lemmer
  • Paula Melariri
  • Belle Nyamboli
  • Hulda Swai
Chapter

Abstract

The use of current treatments for poverty-related diseases (PRDs) is compromised due to factors such as toxicity and poor solubility leading to lowered bioavailability and thus reduced efficacy. In addition, there is lack of activity from the pharmaceutical industry due to the difficulty in refinancing the high development costs. Hence, new approaches have to be explored for the treatment of PRDs. Nanotechnology-based drug delivery systems (nanomedicine) offer a possible solution by presenting the ability to alter the pharmacokinetics of the conventional drugs to enhance bioavailability, increase the half-life of the drugs and reduce the toxicity. The advantages that nanomedicine-based drug delivery systems present in the treatment of PRDs and the progress of its application in Africa are summarised in this chapter. Nanodrug delivery systems seem to be a promising and viable strategy for improving treatment of PRDs and should urgently be considered in drug development programmes in Africa.

Keywords

Human Immunodeficiency Virus Drug Delivery System Visceral Leishmaniasis PLGA Nanoparticles Drug Development Programme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ACTs

Artemisinin-based combination therapies

ADME

Absorption, distribution, metabolism and excretion

ARV

Antiretroviral

AUC

Area under the curve

Cmax

Maximum plasma concentration

CYP

Cytochrome P450

ESE

Emulsion-solvent-evaporation

ESSE

Emulsion-solvent-surfactant-evaporation

ETB

Ethambutol

HIV

Human immunodeficiency virus

INH

Isoniazid

IV

Intravenous

MIC

Minimum inhibitory concentration

NTDs

Neglected tropical diseases

PBCA

Poly(butyl-2-cyanoacrylate)

PCL

Polycaprolactone

PEG

Polyethylene glycol

PK

Pharmacokinetics

PLGA

Poly(D,L-lactic-co-glycolic acid)

PRDs

Poverty-related diseases

PZA

Pyrazinamide

RES

Reticuloendothelial system

RECG

Reverse-emulsion-cationic-gelification

RESCG

Reverse-emulsion-surfactant-cationic-gelification

RIF

Rifampicin

R&D

Research and development

TB

Tuberculosis

References

  1. 1.
    Bawa R, Bawa SR, Maebius SB et al (2005) Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 1:150–158CrossRefGoogle Scholar
  2. 2.
    Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24CrossRefGoogle Scholar
  3. 3.
    Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599CrossRefGoogle Scholar
  4. 4.
    WHO (2010) Global tuberculosis control: WHO report 2010. World Health Organisation, GenevaGoogle Scholar
  5. 5.
    WHO (2010) World malaria report 2010. World Health Organisation, GenevaGoogle Scholar
  6. 6.
    UNAIDS (2010) UNAIDS report on the global AIDS epidemicGoogle Scholar
  7. 7.
    Davidson RN (2005) Leishmaniasis. Medicine 33:43–46Google Scholar
  8. 8.
    Anwabani GM (2002) Drug development: a perspective from Africa. Paediatr Perinat Drug Ther 5:4–11CrossRefGoogle Scholar
  9. 9.
    Choonara YE, Pillay V, Ndesendo VMK et al (2011) Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids Surf B Biointerfaces 87:243–254CrossRefGoogle Scholar
  10. 10.
    Semete B, Booysen L, Lemmer Y et al (2010) In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 6:662–671CrossRefGoogle Scholar
  11. 11.
    Semete B, Booysen LI, Kalombo L et al (2010) In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 249:158–165CrossRefGoogle Scholar
  12. 12.
    Swai H, Semete B, Kalombo L et al (2008) Potential of treating tuberculosis with a polymeric nano-drug delivery system. J Control Release 132:e48CrossRefGoogle Scholar
  13. 13.
    Ma Z, Lienhardt C, McIlleron H et al (2010) Global tuberculosis drug development pipeline: the need and the reality. Lancet 375:2100–2109CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Jang GR, Harris RZ, Lau DT (2001) Pharmacokinetics and its role in small molecule drug discovery research. Med Res Rev 21:382–396CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Nzila A, Chilengi R (2010) Modulators of the efficacy and toxicity of drugs in malaria treatment. Trends Pharmacol Sci 31:277–283CrossRefGoogle Scholar
  18. 18.
    Grimberg BT, Mehlotra RK (2011) Expanding the antimalarial drug arsenal-now, but how? Pharmaceuticals (Basel) 4:681–712Google Scholar
  19. 19.
    Chatelain E, Ioset JR (2011) Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther 5:175–181Google Scholar
  20. 20.
    Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715CrossRefGoogle Scholar
  21. 21.
    Riviere JE (2009) Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:26–34CrossRefGoogle Scholar
  22. 22.
    Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450CrossRefGoogle Scholar
  23. 23.
    Gelperina S, Kisich K, Iseman MD et al (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490CrossRefGoogle Scholar
  24. 24.
    Li SD, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504CrossRefGoogle Scholar
  25. 25.
    Pandey R, Ahmad Z, Sharma S et al (2005) Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int J Pharm 301:268–276CrossRefGoogle Scholar
  26. 26.
    Medina C, Santos-Martinez MJ, Radomski A et al (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558CrossRefGoogle Scholar
  27. 27.
    Kingsley JD, Dou H, Morehead J et al (2006) Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 1:340–350CrossRefGoogle Scholar
  28. 28.
    McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594CrossRefGoogle Scholar
  29. 29.
    Desai MP, Labhasetwar V, Walter E et al (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573CrossRefGoogle Scholar
  30. 30.
    Koziara JM, Lockman PR, Allen DD et al (2003) In situ blood-brain barrier transport of nanoparticles. Pharm Res 20:1772–1778CrossRefGoogle Scholar
  31. 31.
    Park JH, Saravanakumar G, Kim K et al (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62:28–41CrossRefGoogle Scholar
  32. 32.
    Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18CrossRefGoogle Scholar
  33. 33.
    Mohanraj VJ, Chen Y (2006) Nanoparticles – a review. Trop J Pharm Res 5:561–573Google Scholar
  34. 34.
    Kondo N, Iwao T, Kikuchi M et al (1993) Pharmacokinetics of a micronized, poorly water-soluble drug, HO-221, in experimental animals. Biol Pharm Bull 16:796–800CrossRefGoogle Scholar
  35. 35.
    Mittal G, Sahana DK, Bhardwaj V et al (2007) Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 119:77–85CrossRefGoogle Scholar
  36. 36.
    Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18CrossRefGoogle Scholar
  37. 37.
    Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 61:768–784CrossRefGoogle Scholar
  38. 38.
    Gaucher G, Dufresne MH, Sant VP et al (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188CrossRefGoogle Scholar
  39. 39.
    Jones M, Leroux J (1999) Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111CrossRefGoogle Scholar
  40. 40.
    Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev 57:2106–2129CrossRefGoogle Scholar
  41. 41.
    Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50:161–177CrossRefGoogle Scholar
  42. 42.
    Couvreur P, Barratt G, Fattal E et al (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19:99–134CrossRefGoogle Scholar
  43. 43.
    Sosnik A, Carcaboso AM, Glisoni RJ et al (2010) New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev 62:547–559CrossRefGoogle Scholar
  44. 44.
    Semete B, Kalombo L, Katata L et al. (2011) Potential of improving the treatment of tuberculosis through nanomedicine. Mol Cryst Liq Cryst 556:317–330Google Scholar
  45. 45.
    Trewyn BG, Nieweg JA, Zhao Y et al (2008) Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem Eng J 137:23–29CrossRefGoogle Scholar
  46. 46.
    Benadie Y, Deysel M, Siko DG et al (2008) Cholesteroid nature of free mycolic acids from M. tuberculosis. Chem Phys Lipids 152:95–103CrossRefGoogle Scholar
  47. 47.
    Lemmer Y, Semete B, Booysen L et al (2008) Targeted nanodrug delivery systems for the treatment of tuberculosis. Drug Discov Today 15:1098CrossRefGoogle Scholar
  48. 48.
    Murray HW, Berman JD, Davies CR et al (2005) Advances in leishmaniasis. Lancet 366:1561–1577CrossRefGoogle Scholar
  49. 49.
    Abdulla M-H, Lim K-C, Sajid M et al (2007) Schistosomiasis mansoni: Novel chemotherapy using a cysteine protease inhibitor. PLoS Med 4:130–138CrossRefGoogle Scholar
  50. 50.
    Islam RU, Hean J, van Otterlo WAL et al (2009) Efficient nucleic acid transduction with lipoplexes containing novel piperazine- and polyamine-conjugated cholesterol derivatives. Bioorg Med Chem Lett 19:100–103CrossRefGoogle Scholar
  51. 51.
    Arbuthnot P (2009) Applying nanotechnology to gene therapy for treatment of serious viral infections. Nano News, South Africa. http://www.sani.org.za/pdf/NanoNovember09.pdf. Accessed 24 Oct 2011
  52. 52.
    Steyn JD, Wiesner L, du Plessis LH et al (2011) Absorption of the novel artemisinin derivatives artemisone and artemiside: potential application of Pheroid technology. Int J Pharm 414:260–266CrossRefGoogle Scholar
  53. 53.
    Lowell JE, Earl CD (2009) Leveraging biotech’s drug discovery expertise for neglected diseases. Nat Biotechnol 27:323–329CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Rose Hayeshi
    • 1
  • Boitumelo Semete
    • 1
  • Lonji Kalombo
    • 1
  • Lebogang Katata
    • 1
  • Yolandy Lemmer
    • 1
  • Paula Melariri
    • 1
  • Belle Nyamboli
    • 1
  • Hulda Swai
    • 1
  1. 1.Council for Scientific and Industrial Research, Polymers and CompositesPretoriaSouth Africa

Personalised recommendations