Random and Rational Approaches to HIV Drug Discovery in Africa

Chapter

Abstract

The development of therapeutic agents to inhibit human immunodeficiency virus (HIV) replication began soon after the isolation and identification of the virus as the causative agent of the acquired immune deficiency syndrome (AIDS). Within a short period of time thereafter, azidothymidine (AZT) was found to inhibit viral replication and became the first FDA-approved drug for the treatment of HIV/AIDS in 1987. Since then, continual and substantial progress has been made. To date, 35 drugs have been clinically approved, and with treatment, HIV infection has been transformed from a life-threatening disease with a short survival rate into a chronic manageable condition. Furthermore, several drugs are currently under investigation in various stages of clinical and preclinical development. Despite this remarkable success, there is continued global effort directed towards the design, discovery and development of novel inhibitors that may improve treatment strategies and overcome new challenges that have arisen. This chapter focuses on the discovery phase of the HIV drug discovery and development pipeline and describes the contribution and progress made by African scientists and research laboratories. Review of the period 1990 to present day reveals considerable African research describing anti-HIV inhibitors, derived from natural sources or through synthetic means, and identified through both rational and random drug discovery approaches. Several challenges facing HIV researchers on the continent disproportionately affected by HIV/AIDS are also described.

Keywords

Human Immunodeficiency Virus Acquire Immune Deficiency Syndrome Rational Drug Design Human Immunodeficiency Virus Protease Inhibitor Drug Development Pipeline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    DiMasi J (2002) The value of improving the productivity of the drug development process: faster times and better decisions. Pharmacoeconomics 20(3):1–10Google Scholar
  2. 2.
    DiMasi J, Hansen R, Grabowski H (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185Google Scholar
  3. 3.
    Light DW, Warburton R (2011) Demythologizing the high costs of pharmaceutical research. BioSocieties 6:34–50Google Scholar
  4. 4.
    Adams CP, Brantner VV (2010) Spending on new drug development. Health Econ 19(2):130–141Google Scholar
  5. 5.
  6. 6.
    UNAIDS (2008) Report on the global HIV/AIDS epidemic 2008: Annex 1, HIV and AIDS estimates and data, 2007 and 2001Google Scholar
  7. 7.
    World Health Organisation (2010) Antiretroviral therapy for HIV infection in adults and adolescents: recommendations for a public health approach – 2010 revGoogle Scholar
  8. 8.
    Barnhart M, Shelton J (2011) A better state of ART improving antiviral regimens to increase global access to HIV treatment. J AIDS HIV Res 3:71–78Google Scholar
  9. 9.
    HIV drugs: a global strategic business report. 2010 Global Industry Analysts Inc., CAGoogle Scholar
  10. 10.
  11. 11.
    i-BASE/Treatment Action Group (Second Edition, September 2011) ‘2011 Pipeline Report’ HIV, hepatitis C virus (HCV), and tuberculosis drugs, diagnostics, vaccines, and preventive technologies in developmentGoogle Scholar
  12. 12.
    Comley J (2006) Tools and technology that facilitate automated screening. In: Huser J (ed) High throughput-screening in drug discovery. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, GermanyGoogle Scholar
  13. 13.
    Downey W, Liu C, Hartigan J (2010) Compound profiling: size impact on primary screening libraries. Drug Discov World, Spring 2010Google Scholar
  14. 14.
    Davis AM, Teague SJ, Kleywegt GJ (2003) Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew Chem Int Ed 42:2718–2736Google Scholar
  15. 15.
    Wlodawer A (2002) Rational approach to AIDS drug design through structural biology. Annu Rev Med 53:595–614Google Scholar
  16. 16.
    Wang Y, Lu H, Zhu Q, Jiang S et al (2010) Structure-based design, synthesis and biological evaluation of new N-carboxyphenylpyrrole derivatives as HIV fusion inhibitors targeting gp41. Bioorg Med Chem Lett 20(1):189–192Google Scholar
  17. 17.
    Das K, Lewi PJ, Hughes SH et al (2005) Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog Biophys Mol Biol 88(2):209–231Google Scholar
  18. 18.
    Chin Y-W, Balunas MJ, Chai HB et al (2006) Drug discovery from natural sources. AAPS J 8(2):E239–E253Google Scholar
  19. 19.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477Google Scholar
  20. 20.
    Molinari G (2009) Natural products in drug discovery: present status and perspectives. Adv Exp Med Biol 655:13–27Google Scholar
  21. 21.
    Kuete V, Metuno R, Keilah PL et al (2010) Evaluation of the genus Treculia for antimycobacterial, anti-reverse transcriptase, radical scavenging and antitumor activities. S Afr J Bot 76(3):530–535Google Scholar
  22. 22.
    Lee JS, Oh WK, Ahn JS et al (2009) Prenylisoflavonoids from Erythrina senegalensis as novel HIV-1 protease inhibitors. Planta Med 75:268–270Google Scholar
  23. 23.
    Wafo P, Nyasse B, Fontaine C (1999) A 7,8-dihydro-8-hydroxypalmatine from Enantia chlorantha. Phytochemistry 50:279–281Google Scholar
  24. 24.
    Asres K, Bucar F, Kartnig T et al (2001) Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2. Phytother Res 15:62–69Google Scholar
  25. 25.
    Asres K, Seyoum A, Veeresham C et al (2005) Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother Res 19:557–581Google Scholar
  26. 26.
    Gosse B, Gnabre J, Bates RB et al (2002) Antiviral saponins from Tieghemella heckelii. J Nat Prod 65:1942–1944Google Scholar
  27. 27.
    Kanyara JN, Njagi ENM (2005) Anti-HIV-1 activities in extracts from some medicinal plants as assessed in an in vitro biochemical HIV-1 reverse transcriptase assay. Phytother Res 19:287–290Google Scholar
  28. 28.
    Daoubi M, Marquez N, Mazoir N et al (2007) Isolation of new phenylacetylingol derivatives that reactivate HIV-1 latency and a novel spirotriterpenoid from Euphorbia officinarum latex. Bioorg Med Chem 15:4577–4584Google Scholar
  29. 29.
    Esimone CO, Eck G, Nworu CS et al (2010) Dammarenolic acid, a secodammarane triterpenoid from Aglaia sp. shows potent anti-retroviral activity in vitro. Phytomedicine 17:540–547Google Scholar
  30. 30.
    Esimone CO, Grunwald T, Wildner O et al (2005) In vitro pharmacodynamic evaluation of antiviral medicinal plants using a vector-based assay technique. J Appl Microbiol 99:1346–1355Google Scholar
  31. 31.
    Bot YS, Mgbojikwe LO, Chika N et al (2007) Screening of the fruit pulp extract of Momordica balsamina for anti HIV property. Afr J Biotechnol 6(1):47–52Google Scholar
  32. 32.
    Prinsloo G, Meyer JJM, Hussein AA et al (2010) A cardiac glucoside with in vitro anti-HIV activity isolated from Elaeodendron croceum. Nat Prod Res 24(18):1743–1746Google Scholar
  33. 33.
    Prinsloo G, Meyer JJM, Hussein AA (2007) Anti-HIV activity of a cardiac glycoside isolated from Elaeodendron croceum. S Afr J Bot 73(2):308Google Scholar
  34. 34.
    Mujovo SF, Hussein AA, Meyer JJM et al (2008) Bioactive compounds from Lippia javanica and Hoslundia opposite. Nat Prod Res 22(12):1047–1054Google Scholar
  35. 35.
    Klos M, van de Venter M, Milne PJ et al (2009) In vitro anti-HIV activity of five selected South African medicinal plant extracts. J Ethnopharmacol 124:182–188Google Scholar
  36. 36.
    Harnett SM, Oosthuizen V, van de Venter M (2005) Anti-HIV activities of organic and aqueous extracts of Sutherlandia frutescens and Lobostemon trigonus. J Ethnopharmcol 96:113–119Google Scholar
  37. 37.
    Tshikalange TE, Meyer JJM, Lall N et al (2008) In vitro anti-HIV-1 properties of ethnobotanically selected South African plants used in the treatment of sexually transmitted diseases. J Ethnopharmacol 119:478–481Google Scholar
  38. 38.
    Tshikalange TE, Meyer JJM, Hattori T et al (2008) Anti-HIV screening of ethnobotanical selected SA plants. S Afr J Bot 74(2):391Google Scholar
  39. 39.
    Tshikalange TE, Lall N, Meyer JJM et al (2007) In vitro HIV-1 reverse transcriptase inhibitory activity of naphthoquinones and derivatives from Euclea natalensis. S Afr J Bot 73(2):308Google Scholar
  40. 40.
    Bessong PO, Obi CL, Andreola ML et al (2005) Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J Ethnopharmcol 99:83–91Google Scholar
  41. 41.
    Bessong PO, Rojas LB, Obi LC et al (2006) Further screening of Venda medicinal plants for activity against HIV type 1 reverse transcriptase and integrase. Afr J Biotechnol 5(6):526–528Google Scholar
  42. 42.
    Ndhlala AR, Finnie JF, Van Staden J (2010) In vitro antioxidant properties, HIV-1 reverse transcriptase and acetylcholinesterase inhibitory effects of traditional herbal. Preparations Sold in South Africa. Molecules 15:6888–6904Google Scholar
  43. 43.
    Van Wyk BE, Albrecht C (2008) A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol 119:620–629Google Scholar
  44. 44.
    Ali H, Konig GM, Khalid SA, Wright AD et al (2002) Evaluation of selected Sudanese medicinal plants for their in vitroactivity against hemoflagellates, selected bacteria, HIV-1-RT and tyrosine kinase inhibitory, and for cytotoxicity. J Ethnopharmacol 83:219–228Google Scholar
  45. 45.
    Hussein G, Miyashiro H, Nakamura N et al (1999) Inhibitory effects of Sudanese plant extracts on HIV-1 replication and HIV-1 protease. Phytother Res 13:31–36Google Scholar
  46. 46.
    Magadula JJ, Tewtrakul S (2010) Anti-HIV-1 protease activities of crude extracts of some Garcinia species growing in Tanzania. Afr J Biotechnol 9(12):1848–1852Google Scholar
  47. 47.
    Magadula JJ (2010) A bioactive isoprenylated xanthone and other constituents of Garcinia edulis. Fitoterapia 81:420–423Google Scholar
  48. 48.
    Maregesi SM, Hermans N, Dhooghe L et al (2010) Phytochemical and biological investigations of Elaeodendron schlechteranum. J Ethnopharmacol 129:319–326Google Scholar
  49. 49.
    Maregesi S, Van Miert S, Pannecouque C et al (2010) Screening of Tanzanian medicinal plants against Plasmodium falciparum and human immunodeficiency virus. Planta Med 76:195–201Google Scholar
  50. 50.
    El Dine RS, El Halawany AM, Ma CM et al (2009) Inhibition of the dimerization and active site of HIV-1 protease by secondary metabolites from the Vietnamese mushroom Ganoderma colossum. J Nat Prod 72:2019–2023Google Scholar
  51. 51.
    Hooper GJ, Davies-Coleman MT (1995) Sesquiterpene hydroquinones from the South African soft coral Alcyonium fauri. Tetrahedron Lett 36(18):3265–3268Google Scholar
  52. 52.
    Wayengera M, Byarugaba W, Kajjumbula H (2007) Frequency and site mapping of HIV 1/SIVcpz, HIV-2/SIVsmm and other SIV gene sequence cleavage by various bacteria restriction enzymes: precursors for a novel HIV inhibitory product. Afr J Biotechnol 6(10):1225–1232Google Scholar
  53. 53.
    Wayengera M (2008) Why bacteria derived R-M nucleic enzymatic peptides are likely efficient therapeutic molecules for use in the design and development of novel HIV inhibitory strategies. Afr J Biotechnol 7(12):1791–1796Google Scholar
  54. 54.
    Wayengera M (2007) A recombinant lactobacillus strain expressing genes coding for restriction enzymes cleaving the HIV genomes for use as a live microbicide strategy against heterosexual transmission of HIV. Afr J Biotechnol 6(15):1750–1756Google Scholar
  55. 55.
    Gericke N, Albrecht CF, Van Wyk B et al (2001) Sutherlandia frutescens. Aust J Med Herb 13:9–15Google Scholar
  56. 56.
    Chaffy N, Stokes T (2002) AIDS herbal therapy. Trends Plant Sci 7:57Google Scholar
  57. 57.
    Mills E, Cooper C, Seely D et al (2005) African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology. Nutr J 4:1–6Google Scholar
  58. 58.
    Johnson Q, Syce J, Nell H et al (2007) A randomized, double-blind, placebo-controlled trial of Lessertia frutescens in healthy adults. PLOS Clin Trials 2(4):e16Google Scholar
  59. 59.
    Singh IP, Bharate SP, Bhutani KK (2005) Anti-HIV natural products. Curr Sci 89(2):269–290Google Scholar
  60. 60.
    Chinsembu KC, Hedimbi M (2010) Ethnomedicinal plants and other natural products with anti-HIV active compounds and their putative models of action. Int J Biotechnol Mol Biol Res 1:74–91Google Scholar
  61. 61.
    De Koning CB, Michael JP, van Otterlo WAL (2000) Synthesis of isochromane analogues of the michellamines and korupensamines. J Chem Soc Perkin Trans 1:799–811Google Scholar
  62. 62.
    Olomola TO, Klein R, Lobb KA et al (2010) Towards the synthesis of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors. Tetrahedron Lett 51:6325–6328Google Scholar
  63. 63.
    Kaye PT, Musa MA, Nchinda AT et al (2004) Novel heterocyclic analogues of the HIV-1 protease inhibitor, ritonavir. Synth Commun 34(14):2575–2589Google Scholar
  64. 64.
    Familoni OB, Klaas PJ, Lobb KA et al (2006) The Baylis–Hillman approach to quinoline derivatives. Org Biomol Chem 4:3960–3965Google Scholar
  65. 65.
    Webb MR, Ebeler SE (2004) Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: structural determinates of activity. Biochem J 384:527–541Google Scholar
  66. 66.
    Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582Google Scholar
  67. 67.
  68. 68.
    Essa AH, Ibrahim M, Hameed AJ et al (2008) Theoretical investigation of 3’-subtituted-2’-3’-dideoxythymidines related to AZT. QSAR infrared and substituent electronic effect studies. ARKIVOC xiii:255–265Google Scholar
  69. 69.
    Sheha MM, El-Koussi NA, Farag HH (2003) Brain delivery of HIV protease inhibitors. Arch Pharm Pharm Med Chem 1:47–52Google Scholar
  70. 70.
    Sheha MM, Mahfouz NM, Hassan HY et al (2000) Synthesis of di- and tripeptide analogues containing a-ketoamide as a new core structure for inhibition of HIV-1 protease. Eur J Med Chem 35:887–894Google Scholar
  71. 71.
    Dessalew N (2009) Investigation of the structural requirement for blocking the human CCR5 chemokine receptor. An insight from quantitative structure activity relationships study. Lett Drug Des Discov 6:114–124Google Scholar
  72. 72.
    Dessalew N (2008) QSAR Study on piperidinecarboxamides as antiretroviral agents: an insight into the structural basis for HIV coreceptor antagonist activity. QSAR Comb Sci 27(7):901–912Google Scholar
  73. 73.
    Darnag R, Schmitzer A, Belmiloud Y et al (2010) Quantitative structure-activity relationship studies of TIBO derivatives using support vector machines. SAR QSAR Environ Res 21(3–4):231–246Google Scholar
  74. 74.
    Darnag R, Mazouz ELM, Schmitzer A et al (2010) Support vector machines: development of QSAR models for predicting anti-HIV-1 activity of TIBO derivatives. Eur J Med Chem 45:1590–1597Google Scholar
  75. 75.
    Darnag R, Schmitzer A, Belmiloud Y et al (2008) QSAR Studies of HEPT derivatives using support vector machines. QSAR Comb Sci 28(6–7):709–718Google Scholar
  76. 76.
    Douali L, Villemin D, Zyad A et al (2004) Artificial neural networks: non-linear QSAR studies of HEPT derivatives as HIV-1 reverse transcriptase inhibitors. Mol Divers 8:1–8Google Scholar
  77. 77.
    Douali L, Villemin D, Cherqaoui D (2004) Exploring QSAR of non-nucleoside reverse transcriptase inhibitors by neural networks: TIBO derivatives. Int J Mol Sci 5:48–55Google Scholar
  78. 78.
    Douali L, Villemin D, Cherqaoui D (2003) Neural networks: accurate nonlinear QSAR model for HEPT derivatives. J Chem Inf Comput Sci 43:1200–1207Google Scholar
  79. 79.
    Zahouily M, Rakik J, Lazar M et al (2007) Exploring QSAR of non-nucleoside reverse transcriptase inhibitors by artificial neural networks: HEPT derivatives. ARKIVOC xiv:245–256Google Scholar
  80. 80.
    Bazoui H, Zahouily M, Sebti S et al (2002) Structure-cytotoxicity relationships for a series of HEPT derivatives. J Mol Model 8:1–7Google Scholar
  81. 81.
    Bode ML, Gravestock D, Moleele SS et al (2011) Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 19:4227–4237Google Scholar
  82. 82.
    Makatini MM, Petzold K, Sriharsha SN et al (2011) Pentacycloundecane-based inhibitors of wild-type C-South African HIV-protease. Bioorg Med Chem Lett 21:2274–2277Google Scholar
  83. 83.
    Makatini MM, Petzold K, Sriharsha SN et al (2011) Synthesis and structural studies of pentacycloundecane-based HIV-1 PR inhibitors: a hybrid 2D NMR and docking/QM/MM/MD approach. Eur J Med Chem 46(9):3976–3985Google Scholar
  84. 84.
    Karpoormath R, Sayed Y, Govender P et al (2012) Pentacycloundecance derived hydroxyl acid peptides: a new class of irreversible non-scissile ether bridged isoster as potential HIV-1 wild type C-SA protease inhibitors. Bioorg Chem 40(1):19–29Google Scholar
  85. 85.
    Mphahlele M, Papathanasopoulos M, Cinellu MA et al (2012) Modification of HIV-1 reverse transcriptase and integrase activity by gold(III) complexes in direct biochemical assays. Bioorg Med Chem 20(1):401–407Google Scholar
  86. 86.
    El-Sayed WA, El-Essawy FA, Ali OM et al (2010) Synthesis and antiviral evaluation of new 2,5-disubstituted 1,3,4-oxadiazole derivatives and their acyclic nucleoside analogues. Monatsh Chem 141:1021–1028Google Scholar
  87. 87.
    Abdel-Rahman AAH, El-Etrawy AASH, Abdel-Megied AES et al (2008) Synthesis and antiviral evaluation of novel 2,3-dihydroxypropyl nucleosides from 2- and 4-thiouracils. Nucleosides Nucleotides Nucleic Acids 27:1257–1271Google Scholar
  88. 88.
    Abdel-Rahman AAH (2008) Amino acid derivatives, VI [1]: synthesis, antiviral, and antimicrobial evaluation of a-amino acid esters bearing a 1,2,3-triazolo[4,5-d]pyrimidinedione side chain. Monatsh Chem 139:61–68Google Scholar
  89. 89.
    Abdel-Rahman AAH (2008) Amino acid derivatives, VII [1]: synthesis and antiviral evaluation of a-amino acid esters bearing an indazole side chain. Monatsh Chem 139:289–297Google Scholar
  90. 90.
    Abdel-Rahman AAH, Abdel-Megied AES, Goda AES et al (2003) Synthesis and anti-HBV activity of thiouracils linked via S and N-1 to the 5-position of methyl b-D-ribofuranoside. Nucleosides Nucleotides Nucleic Acids 22(11):2027–2038Google Scholar
  91. 91.
    Abdel-Rahman AAH (2003) Synthesis and anti-hepatitis B virus activity of glucosylated 2-O-ethyluracils. Monatsh Chem 134:929–939Google Scholar
  92. 92.
    Ali IAI, Al-Masoudi IA, Hassan HG et al (2007) Synthesis and anti-HIV activity of new homo acyclic nucleosides, 1-(pent-4-enyl)quinoxalin-2-ones and 2-(pent-4-enyloxy) quinoxalines. Chem Heterocycl Compd 43(8):1052Google Scholar
  93. 93.
    Al-Masoudi NA, Al-Soud YA, Ali IAI et al (2007) New AZT analogues having 5-alkylsulfonyl groups: synthesis and anti-HIV activity. Nucleosides Nucleotides Nucleic Acids 26:223–230Google Scholar
  94. 94.
    Ali IAI, Al-Masoudi IA, Aziz NM et al (2008) New acyclic quinoxaline nucleosides. Synthesis and anti-HIV activity. Nucleosides Nucleotides Nucleic Acids 27:146–156Google Scholar
  95. 95.
    Al-Masoudi IA, Khodair AI, Al-Soud YA et al (2003) Synthesis of N-substituted 1-amino-2,3-dihydro- 1 H-imidazole-2-thione-N-nucleosides and S-glycosylated derivatives. Nucleosides Nucleotides Nucleic Acids 22(3):299–307Google Scholar
  96. 96.
    Rida SM, Ashour FA, El-Hawash SAM et al (2007) Synthesis of some novel substituted purine derivatives as potential anticancer, anti-HIV-1 and antimicrobial agents. Arch Pharm Chem Life Sci 340:185–194Google Scholar
  97. 97.
    Attia AM, Sallam MA, Almehdi AA et al (1999) Synthesis and biological activity of modified thiopyrimidine nucleosides. Nucleosides Nucleotides 18:2307–2315Google Scholar
  98. 98.
    Attia AM, Elgemeie GH, Alnaimi IS (1998) Synthesis of 1-(β-D-glycopyranosyl)-3-deazapyrimidines from 2-hydroxy and 2-mercaptopyridines. Nucleosides Nucleotides 17(8):1355–1363Google Scholar
  99. 99.
    EIgemeie GEH, Attia AME, Hussain BAW (1998) A synthetic strategy to a new class of cycloalkane ring-fused pyridine nucleosides as potential anti HIV agents. Nucleosides Nucleotides 17(5):855–868Google Scholar
  100. 100.
    El-Emam AA, Nasr MNA, Pedersen EB et al (2001) Synthesis of certain 6-(arylthio)uracils as potential antiviral agents. Phosphorus Sulfur Silicon Relat Elem 174:25–35Google Scholar
  101. 101.
    Elshehry MF, Balzarini J, Meier C (2009) Synthesis of new cyclic and acyclic 5-halouridine derivatives as potential antiviral agents new 5-halouridine derivatives as potential antiviral agents. Synthesis 5:841–847Google Scholar
  102. 102.
    Elgemeie GEH, Mansour OA, Metwally NH (1999) Synthesis and anti-HIV activity of different novel nonclassical nucleosides. Nucleosides Nucleotides 18(1):113–123Google Scholar
  103. 103.
    Hafez HN, Hussein HAR, El-Gazzar ARBA (2010) Synthesis of substituted thieno[2,3-d]pyrimidine-2,4-dithiones and their S-glycoside analogues as potential antiviral and antibacterial agents. Eur J Med Chem 45:4026–4034Google Scholar
  104. 104.
    Galal SA, Abd El-All ASA, Hegab KH et al (2010) Novel antiviral benzofuran-transition metal complexes. Eur J Med Chem 45:3035–3046Google Scholar
  105. 105.
    Galal SA, Abd El-All ASA, Abdallah MM et al (2009) Synthesis of potent antitumor and antiviral benzofuran derivatives. Bioorg Med Chem Lett 19:2420–2428Google Scholar
  106. 106.
    Prestat G, Dubreui D, Adjou A et al (2000) Synthesis of 3′-O2-(azaheterocycle)- thymidines nucleosides. Nucleosides Nucleotides Nucleic Acids 19(4):735–748Google Scholar
  107. 107.
    Ané A, Prestat G, Manh GT et al (2001) Synthesis of nucleoside analogs and new Tat protein inhibitors. Pure Appl Chem 73(7):1189–1196Google Scholar
  108. 108.
    Al-Masoudi NA, Al-Soud YA, Al-Masoudi WA (2004) Thiosugar nucleosides. Synthesis and biological activity of 1,3,4-thiadiazole, thiazoline and thiourea derivatives of 5-thio-d-glucose. Nucleosides Nucleotides Nucleic Acids 23(11):1739–1749Google Scholar
  109. 109.
    Len C, Selouane A, Weiling A et al (2003) Asymmetric synthesis of (3S) 3-benzoyloxymethylisobenzofuranone and its 3R enantiomer as analogues of α, β-butenolides. Tetrahedron Lett 44:663–666Google Scholar
  110. 110.
    Selouane A, Vaccher C, Villa P et al (2002) Enantiomeric d4T analogues and their structural determination. Tetrahedron Asymmetry 13:407–413Google Scholar
  111. 111.
    Chaouni-Benabdallah A, Galtier C, Allouchi H et al (2001) A 3-benzamido, ureido and thioureidoimidazo[1,2-a]pyridine derivatives as potential antiviral agents. Chem Pharm Bull 49(12):1631–1635Google Scholar
  112. 112.
    Chaouni-Benabdallah A, Galtier C, Allouchi H et al (2001) Synthesis of 3-nitrosoimidazo[1,2-a]pyridine derivatives as potential antiretroviral agents. Arch Pharm Pharm Med Chem 334:224–228Google Scholar
  113. 113.
    Lazrek HB, Vasseur JJ, Secrist J et al (2007) A glutaric acid ester as carrier system for sustained delivery of lamuvidine (3tc) dimers. Nucleosides Nucleotides Nucleic Acids 26:1103–1106Google Scholar
  114. 114.
    Taourirte M, Lazrek HB, Rochdi A et al (2005) Homo and heterodimers of ddi, d4t and azt: influence of (5′-5′) thiolcabonate-carbamate linkage on anti-HIV activity. Nucleosides Nucleotides Nucleic Acids 24(5–7):523–525Google Scholar
  115. 115.
    Tourirte M, Oulih T, Lazrek HB et al (2003) Synthesis of 3O-deoxy-3O-[4-(pyrimidin-1-yl)methyl-1,2,3-triazol-1-yl]thymidine via 1,3-dipolar cycloaddition. Nucleosides Nucleotides Nucleic Acids 22(11):1985–1993Google Scholar
  116. 116.
    Ait Mohamed L, Taourirte M, Rochdi A et al (2003) Synthesis of new homo and heterodimers of 2O,3O-dideoxyinosine (ddI) using ester linkages. Nucleosides Nucleotides Nucleic Acids 22(5–8):829–831Google Scholar
  117. 117.
    Moukha-chafiq O, Taha ML, Lazrek HB et al (2002) Synthesis and biological evaluation of some acyclic a-(1H-pyrazolo- [3,4-d]pyrimidin-4-yl)thioalkylamide nucleosides. Nucleosides Nucleotides Nucleic Acids 21(2):165–176Google Scholar
  118. 118.
    Lazrek HB, Taourirte M, Oulih T et al (2001) Synthesis and anti-HIV activity of new modified 1,2,3-triazole acyclonucleosides. Nucleosides Nucleotides Nucleic Acids 20(12):1949–1960Google Scholar
  119. 119.
    Moukha-chafiq O, Taha ML, Lazrek HB et al (2001) Synthesis and biological activity of 4-substituted 1-[1-(2-hydroxyethoxy)- methyl-1,2,3-triazol-(4 & 5)-ylmethyl]-1h-pyrazolo[ 3,4-d]pyrimidines. Nucleosides Nucleotides Nucleic Acids 20(10–11):1797–1810Google Scholar
  120. 120.
    Moukha-chafiq O, Taha ML, Lazrek HB et al (2001) Synthesis and biological evaluation of some 4-substituted 1-[1-(4-hydroxybutyl)-1,2,3-triazol- (4 & 5)-ylmethyl]-1h-pyrazolo- [3,4-d]pyrimidines. Nucleosides Nucleotides Nucleic Acids 20(10–11):1811–1821Google Scholar
  121. 121.
    Taourirte M, Lazrek HB, Vasseur JJ et al (2001) Synthesis of new homo and heterodinucleosides containing the 2′,3′-dideoxynucleosides AZT and D4T. Nucleosides Nucleotides Nucleic Acids 20(4–7):959–962Google Scholar
  122. 122.
    Lazrek HB, Engels JW, Pfleidere W (1998) Synthesis of novel branched nucleoside dimers containing a 1,2,3-triazolyl linkage. Nucleosides Nucleotides 17(9–11):1851–1856Google Scholar
  123. 123.
    Lazrek HB, Rochdi A, Khaider H et al (1998) Synthesis of (Z) and (E) alpha – alkenyl phosphonic acid derivatives of purines and pyrimidines. Tetrahedron 54:3807–3816Google Scholar
  124. 124.
    Stieger N, Caira MR, Liebenberg W et al (2010) Influence of the composition of water/ethanol mixtures on the solubility and recrystallization of nevirapine. Cryst Growth Des 10:9Google Scholar
  125. 125.
    Stieger N, Liebenberg W, Wessels JC et al (2010) Channel inclusion of primary alcohols in isostructural solvates of the antiretroviral nevirapine: an X-ray and thermal analysis study. Struct Chem 21:771–777Google Scholar
  126. 126.
    Caira MR, Stieger N, Liebenberg W et al (2008) Solvent inclusion by the anti-HIV drug nevirapine: X-ray structures and thermal decomposition of representative solvates. Cryst Growth Des 8:1Google Scholar
  127. 127.
    Fonteh PN, Keter FK, Meyer D et al (2009) Tetra-chloro-(bis-(3,5-dimethylpyrazolyl)methane)gold(III) chloride: an HIV-1 reverse transcriptase and protease inhibitor. J Inorg Biochem 103:190–194Google Scholar
  128. 128.
    Fonteh PN, Keter FK, Meyer D (2010) HIV therapeutic possibilities of gold compounds. Biometals 23:185–196Google Scholar
  129. 129.
    Younis Y, Hunter R, Muhanji CI et al (2010) [d4U]-Spacer-[HI-236] double-drug inhibitors of HIV-1 reverse-transcriptase. Bioorg Med Chem 18:4661–4673Google Scholar
  130. 130.
    Hunter R, Younis Y, Muhanji CI et al (2008) C-2-Aryl O-substituted HI-236 derivatives as non-nucleoside HIV-1 reverse-transcriptase inhibitors. Bioorg Med Chem 16:10270–10280Google Scholar
  131. 131.
    Hunter R, Muhanji CI, Hale I et al (2007) [d4U]-butyne-[HI-236] as a non-cleavable, bifunctional NRTI/NNRTI HIV-1 reverse-transcriptase inhibitor. Bioorg Med Chem Lett 17:2614–2617Google Scholar
  132. 132.
    Arnott G, Hunter R, Mbeki L et al (2005) New methodology for 2-alkylation of 3-furoic acids: application to the synthesis of tethered UC-781/d4T bifunctional HIV reverse-transcriptase inhibitors. Tetrahedron Lett 46:4023–4026Google Scholar
  133. 133.
    Muhanji CI, Hunter R (2007) Current developments in the synthesis and biological activity of HIV-1 double-drug inhibitors. Curr Med Chem 14:1207–1220Google Scholar
  134. 134.
    N’Da DD, Breytenbach JC, Legoabe LJ et al (2009) Synthesis and in vitro transdermal penetration of methoxypoly(ethylene glycol) carbonate derivatives of stavudine. Med Chem 5:497–506Google Scholar
  135. 135.
    Serradji N, Martin M, Bensaid O et al (2004) Structure-activity relationships in platelet-activating factor. 12. Synthesis and biological evaluation of platelet-activating factor antagonists with anti-HIV-1 activity. J Med Chem 47:6410–6419Google Scholar
  136. 136.
    Serradji N, Bensaid O, Martin M et al (2006) Structure–activity relationships in platelet-activating factor. Part 13: synthesis and biological evaluation of piperazine derivatives with dual anti-PAF and anti-HIV-1 or pure antiretroviral activity. Bioorg Med Chem 14:8109–8125Google Scholar
  137. 137.
    Bendjeddou A, Djebbar H, Berredjem M et al (2006) Cyclosulfamides as constraint dipeptides: the synthesis and structure of Chiral substituted 1,2,5-thiadiazolidine 1,1-dioxides: evaluation of the toxicity. Phosphorus Sulfur Silicon Relat Elem 181:1351–1362Google Scholar
  138. 138.
    Bendjeddou A, Djeribi R, Regainia Z et al (2005) N, N′-substituted 1,2,5 thiadiazolidine 1,1-dioxides: synthesis, selected chemical and spectral proprieties and antimicrobial evaluation. Molecules 10:1387–1398Google Scholar
  139. 139.
    Regaınia Z, Winum JY, Smaine FZ et al (2003) General synthesis of n-membered cyclic sulfamides. Tetrahedron 59:6051–6056Google Scholar
  140. 140.
    Badawey EAM, Kappe T (1997) Synthesis and in vitro anti-HIV activity of certain 2-(1H-benzimidazol-2-ylamino)pyrimidin-4(3H)-ones and related derivatives. Arch Pharm Pharm Med Chem 330:59Google Scholar
  141. 141.
    Badawey E, Kappe T (1995) Benzimidazole condensed ring system. IX. Potential antineoplastics. New synthesis of some pyrido[l,2-a]benzimidazoles and related derivatives. Eur J Med Chem 30:327–332Google Scholar
  142. 142.
    Habib NS, Rida SM, Badawey EAM et al (1996) Condensed thiazoles, i: synthesis of 5,7-disubstituted thiazolo [4,5-d]pyrimidines as possible anti-HIV, anticancer, and antimicrobial agents. Monatsh Chem 127:1203–1207Google Scholar
  143. 143.
    Habib NS, Rida SM, Badawey EAM et al (1996) Condensed thiazoles, ii: synthesis of 7-substituted thiazolo[4,5-d]pyrimidines as possible anti-HIV, anticancer, and antimicrobial agents. Monatsh Chem 127:1209–1214Google Scholar
  144. 144.
    Rida SM, Habib NS, Badawey EAM et al (1995) Synthesis and biological investigations of some new thiazolylbenzimidazoles and benzirnidazolylthiazo10[3,2-a]pyridines. Arch Pharm 328:325–328Google Scholar
  145. 145.
    El-Barbary AA, Abou El-Ezz AZA, Sharaf AM (2007) Studies on 2,4-dithioxo and 2-thioxoimidazolidene derivatives. Phosphorus Sulfur Silicon Relat Elem 182:1621–1632Google Scholar
  146. 146.
    El-Barbary AA, Abou El-Ezz AZA, Sharaf AM et al (2006) The synthesis of some new quinazolone derivatives of potential biological activity. Phosphorus Sulfur Silicon Relat Elem 181:1895–1912Google Scholar
  147. 147.
    El-Barbary AA, Abou-El-Ezz AZA, Abdel-Kader AA et al (2004) Synthesis of some new 4-amino-1,2,4-triazole derivatives as potential anti-HIV and anti-HBV. Phosphorus Sulfur Silicon Relat Elem 179:1497–1508Google Scholar
  148. 148.
    Loksha YM, Pedersen EB, Loddo R et al (2009) Synthesis and anti-HIV-1 activity of 1-substituted 6-(3-cyanobenzoyl) and [(3-cyanophenyl)fluoromethyl]-5-ethyluracils. Arch Pharm Chem Life Sci 342:501–506Google Scholar
  149. 149.
    Loksha YM, El-Barbary AA, El-Badawi MA et al (2005) Synthesis of 2-(aminocarbonylmethylthio)-1 H-imidazoles as novel Capravirine analogues. Bioorg Med Chem 13:4209–4220Google Scholar
  150. 150.
    Loksha YM, El-Badawi MA, El-Barbary AA et al (2003) Synthesis of 2-methylsulfanyl-1 h-imidazoles as novel non-nucleoside reverse transcriptase inhibitors (NNRTIs). Arch Pharm Pharm Med Chem 336:175–180Google Scholar
  151. 151.
    Al-Masoudi NA, Al-Masoudi IA, Ali IAI et al (2005) Amino acid derivatives, part 3: new peptide and glycopeptide derivatives conjugated naphthalene. synthesis, antitumor, anti-HIV, and BVDV evaluation. Heteroatom Chem 16(7):576Google Scholar
  152. 152.
    Ali IAI, Al-Masoudi IA, Saeed B et al (2005) Amino acid derivatives, part 2: synthesis, antiviral, and antitumor activity of simple protected amino acids functionalized at n-terminus with naphthalene side chain. Heteroatom Chem 16(2):148Google Scholar
  153. 153.
    Rida SM, Ashour FA, El-Hawash SAM et al (2005) Synthesis of some novel benzoxazole derivatives as anticancer, anti-HIV-1 and antimicrobial agents. Eur J Med Chem 40:949–959Google Scholar
  154. 154.
    Rida SM, Ashour FA, El-Hawash SAM et al (2006) Synthesis of novel benzofuran and related benzimidazole derivatives for evaluation of in vitro anti-HIV-1, anticancer and antimicrobial activities. Arch Pharm Res 29(10):826–833Google Scholar
  155. 155.
    El-Hamid A, Ismail AA, Attia AME (2003) Synthesis of some new quinazoline derivatives analogues to MKC-442 and TNK 561. Phosphorus Sulfur Silicon Relat Elem 178:1231–1240Google Scholar
  156. 156.
    Diallo K, Loemb H, Oliveir M et al (2000) Inhibition of human immunodeficiency virus type-1 (HIV-1) replication by immunor (Im28), a new analog of dehydroepiandrosterone. Nucleosides Nucleotides Nucleic Acids 19(10–12):2019–2024Google Scholar
  157. 157.
    Mavoungou D, Poaty-Mavoungou V, Akoume MY et al (2005) Inhibition of human immunodeficiency virus type-1 (HIV-1) glycoprotein-mediated cell-cell fusion by immunor (IM28). Virol J 2:9Google Scholar
  158. 158.
    Montembault M, Vo-Thanh G, Deyine A et al (2004) A possible improvement for structure-based drug design illustrated by the discovery of a Tat HIV-1 inhibitor. Bioorg Med Chem Lett 14:1543–1546Google Scholar
  159. 159.
    Ané A, Prestat G, Manh GT et al (2001) Synthesis of nucleoside analogs and new Tat protein inhibitors. Pure Appl Chem 73(7):1189–1196Google Scholar
  160. 160.
    Bhowon MG, Laulloo BSJ (2004) Synthesis and anti-HIV activity of metal complexes of SRR-SB3. Indian J Chem 43(5):1131–1133Google Scholar
  161. 161.
    Bhowon MG (2000) Synthesis, catalytic and biological activity of ruthenium(II) complexes. Indian J Chem 39(11):1207–1209Google Scholar
  162. 162.
    Jhaumeer-Laulloo BS (2000) Synthesis and anti-HIV activity of novel macrocyclic disulphide compounds with thioureylene group. Asian J Chem 12(3):775–780Google Scholar
  163. 163.
    Jhaumeer-Laulloo S, Witvrouw M (2000) Synthesis and anti-HIV activity of novel macrocyclic benzamides with a disulphide bridge. Indian J Chem 39(11):842–846Google Scholar
  164. 164.
    Jhaumeer-Laulloo BS, Ramadas SR (1999) Synthesis and anti-HIV activity of macrocyclic dilactams containing disulphide bridge. Indian J Heterocycl Chem 9(1):1–6Google Scholar
  165. 165.
    Meskini I, Toupet L, Daoudi M et al (2010) Structure of 2-[(phenyl)-(3,5-dimethyl-pyrazol-1-yl)-methyl]- malonic acid diethyl ester. J Chem Crystallogr 40:812–815Google Scholar
  166. 166.
    Meskini I, Daoudi M, Daran JC et al (2010) Poly[[bis{l3-2-[(3,5-dimethyl-1H-pyrazol- 1-yl)(phenyl)methyl]propanedioato} tetrasodium(I)] 7.5-hydrate]. Acta Crystallogr Sect E Struct Rep Online E66:m1009–m1010Google Scholar
  167. 167.
    Meskini I, Daoudi M, Daran JC et al (2010) Diethyl 2-[(3,5-dimethyl-1 H-pyrazol-1- yl)(4-methoxyphenyl)methyl]propanedioate. Acta Crystallogr Sect E Struct Rep Online 66:o1965Google Scholar
  168. 168.
    Meskini I, Toupet L, Daoudi M et al (2010) An efficient protocol for accessing b-amino dicarbonyl compounds through aza-Michael reaction. J Braz Chem Soc 21(6):1129–1135Google Scholar
  169. 169.
    Meskini I, Daoudi M, Daran JC et al (2010) Diethyl 2-[phenyl(pyrazol-1-yl)methyl]- propanedioate. Acta Crystallogr Sect E Struct Rep Online 66:o1014Google Scholar
  170. 170.
    Meskini I, Daoudi M, Daran JC et al (2010) Diethyl 2-[(N-benzyl-N-methylamino)- (phenyl)methyl]propanedioate. Acta Crystallogr Sect E Struct Rep Online 66:o746Google Scholar
  171. 171.
    Meskini I, Daoudi M, Daran JC et al (2010) Diethyl 2-{(dibenzylamino)[4-(trifluoromethyl) phenyl]methyl}malonate. Acta Crystallogr Sect E Struct Rep Online E66:o961–o962Google Scholar
  172. 172.
    Meskini I, Toupet L, Akkurt M et al (2010) Crystal structure of diethyl[(4chlorophenyl) (dibenzylamino)methyl]propanedioate. J Chem Crystallogr 40:391–395Google Scholar
  173. 173.
    Bennani B, Kerbal A, Daoudi M et al (2007) Combined drug design of potential Mycobacterium tuberculosis and HIV-1 inhibitors: 3′,4′-di-substituted -4′H-spiro [isothiochromene-3,5′-isoxazol]-4(1H)-one. ARKIVOC xvi:19–40Google Scholar
  174. 174.
    Ibrahimi S, Sauvé G, Yelle J et al (2005) Synthèse racémique et énantiosélective d’énol-lactones et leur évaluation comme inhibiteurs de la protéase du VIH-1. C R Chim 8:75–83Google Scholar
  175. 175.
    Onajole OK, Makatini MM, Govender P et al (2010) Synthesis and NMR assignment of pentacycloundecane precursors of potential pharmaceutical agents. Magn Reson Chem 48:249–255Google Scholar
  176. 176.
    Touati R, Hassine BB (2008) Asymmetric synthesis of beta-aminosulfones via the enantioselective hydrogenation of the corresponding beta-ketosulfones. Lett Org Chem 5:240–243Google Scholar
  177. 177.
    Samarat A, Amria H, Landaisb Y (2004) Enantioselective synthesis of functionalized g-butyrolactones. Tetrahedron 60:8949–8956Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Advanced Materials Division, MintekBiomed, JohannesburgSouth Africa

Personalised recommendations