Combined STM and Four-Probe Resistivity Measurements on Single Semiconductor Nanowires

  • M. BertheEmail author
  • C. Durand
  • T. Xu
  • J. P. Nys
  • P. Caroff
  • B. Grandidier
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


Transport measurements on free-standing nanostructures with clean and reconstructed facets require an instrumentation based on electrical probes that scan materials at the atomic scale with fine tuning in the establishment of the electrical contact. We describe a multiple probe tunneling microscope that operates under a scanning electron microscope in ultra-high vacuum and fulfills these requirements thanks to a unique control system. We show how this instrument is well adapted to study the resistivity of semiconductor nanowires.


Scanning Tunneling Microscope Image Switch Unit Probe Scan Tunneling Microscope Single Semiconductor Resolution Scanning Tunneling Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P., Lin, C.L.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M.: Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Haraguchi, K., Katsuyama, T., Hiruma, K., Ogawa, K.: GaAs pn junction formed in quantum wire crystals. Appl. Phys. Lett. 60, 745–747 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    Cui, Y., Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Stern, E., Klemic, J.F., Routenberg, D.A., Wyrembak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Fahmy, T.M., Reed, M.A.: Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Minot, E.D., Kelkensberg, F., van Kouwen, M., van Dam, J.A., Kouwenhoven, L.P., Zwiller, V., Borgström, M.T., Wunnicke, O., Verheijen, M.A., Bakkers, E.P.A.M.: Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Dobrev, D., Vetter, J., Angert, N., Neumann, R.: Electrochemical growth of copper single crystals in pores of polymer ion-track membranes. Appl. Phys. A Mater. 69, 233–237 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Zhou, W., Wang, Z.L.: Scanning Microscopy for Nanotechnology, Techniques and Applications. Springer, New York (2007)Google Scholar
  11. 11.
    Elliott, S.L., Broom, R.F., Humphreys, C.J.: Dopant profiling with the scanning electron microscope: a study of Si. J. Appl. Phys. 91, 9116–9122 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Olesen, L., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Schiøtz, J., Stoltze, P., Jacobsen, K.W., Nørskov, J.K.: Quantized conductance in an atom-sized point contact. Phys. Rev. Lett. 72, 2251–2254 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Liu, H., Zhang, Y., Wang, D., Pan, M., Jia, J., Xue, Q.: Two-dimensional growth of Al films on Si(111)-7 × 7 at low-temperature. Surf. Sci. 571, 5–11 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–180 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Auslaender, O.M., Steinberg, H., Yacoby, A., Tserkovnyak, Y., Halperin, B.I., Baldwin, K.W., Pfeiffer, L.N., West, K.W.: Spin-charge separation and localization in one dimension. Science 308, 88 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Dong, L., Bush, J., Chirayos, V., Solanki, R., Jiao, J., Ono, Y., Conley Jr, J.F., Ulrich, B.D.: Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett. 5, 2112 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Patolsky, F., Lieber, C.M.: Nanowire nanosensors. Mater. Today 8, 20 (2005)CrossRefGoogle Scholar
  19. 19.
    Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L.F., Forchel, A., Scheffler, M., Riess, W., Ohlsson, B.J., Gösele, U., Samuelson, L.: Nanowire-based one-dimensional electronics. Mater. Today 9, 28 (2006)CrossRefGoogle Scholar
  20. 20.
    Xu, T., Nys, J.P., Addad, A., Lebedev, O.I., Urbieta, A., Salhi, B., Berthe, M., Grandidier, B., Stiévenard, D.: Faceted sidewalls of silicon nanowires: Au-induced structural reconstructions and electronic properties. Phys. Rev. B 81, 115403 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Thelander, C., Caroff, P., Plissard, S., Dey, A., Dick, K.: Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 11, 2424–2429 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Berthe
    • 1
    Email author
  • C. Durand
    • 1
  • T. Xu
    • 1
  • J. P. Nys
    • 1
  • P. Caroff
    • 1
  • B. Grandidier
    • 1
  1. 1.IEMN—UMR 8520Villeneuve d’Ascq CedexFrance

Personalised recommendations