Atomically Precise Manufacturing: The Opportunity, Challenges, and Impact

  • John N. RandallEmail author
  • James R. Von Ehr
  • Joshua Ballard
  • James Owen
  • Rahul Saini
  • Ehud Fuchs
  • Hai Xu
  • Shi Chen
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


Fifty years ago, Richard Feynman famously stated that “I am not afraid to consider the final question as to whether, ultimately—in the great future—we can arrange the atoms the way we want” (Feynman, “There’s Plenty of Room at the Bottom”, speech on December 29th 1959 at the annual meeting of the American Physical Society at the California Institute of Technology). Twenty years ago, Don Eigler of IBM, did arrange atoms the way he wanted (Eigler and Schweizer, Nature 344:524, 1990). We contend that in the very near future, that arranging atoms the way we want will become a manufacturing technology. This technology will start small, very small, in making practical and profitable products, and from there scale-up to a wide range of products and applications with very large economic and societal impacts. We will explain some of the details of the path that we are on to achieve Atomically Precise Manufacturing (APM), some of the challenges we must overcome to succeed, and the surprising number of applications that we have identified that are waiting for us to exploit.


Atomically precise manufacturing Scanning tunneling microscope Digital lithography Atomic layer epitaxy Precision 



This material is based upon work supported by the Defense Advanced Research Project Agency (DARPA) and Space and Naval Warfare Center, San Diego (SPAWARSYSCEN-SD) under contract N66001-08-C-2040. It is also supported by a grant from the Emerging Technology Fund of the State of Texas to the Atomically Precise Manufacturing Consortium. The authors would also like to acknowledge the excellent support of Maia Bischof and David Jaeger of the University of North Texas for Transmission Electron Microscopy and Focused Ion Beam work respectively, and many useful discussions with Richard Silver and Jason Gorman of NIST, Joseph Lyding of the University of Illinois, Neil Sarkar of ICSPI, Rick Reidy of the University of North Texas, S.V. Sreenivasan at the University of Texas at Austin, Brian Gorman of Colorado School of Mines, and Bob Wallace, Yves Chabal, and K.J. Cho of the University of Texas at Dallas.


  1. 1.
    Feynman, R.: “There’s Plenty of Room at the Bottom”, Speech on December 29th 1959 at the annual meeting of the American Physical Society at the California Institute of TechnologyGoogle Scholar
  2. 2.
    Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanning tunneling microscope. Nature 344, 524 (1990). doi: 10.1038/344524a0 ADSCrossRefGoogle Scholar
  3. 3.
    Taniguchi, N.: On the basic concept of ‘nano-technology’. In: Proceedings of the International Conference on Production Engineering, Tokyo, Part II (Japan Society of Precision Engineering) (1974)Google Scholar
  4. 4.
    Ritala, M., Leskelä, M.: Atomic layer epitaxy—a valuable tool for nanotechnology? Nanotechnology 10(1): 19–24 (1999). doi: 10.1088/0957-4484/10/1/005
  5. 5.
    Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., Seeman, N.C.: From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009). doi: 10.1038/nature08274 ADSCrossRefGoogle Scholar
  6. 6.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 441, 298–302 (2006). doi: 10.1038/nature04586 CrossRefGoogle Scholar
  7. 7.
    Levins, C.G., Schafmeister, C.E.: The synthesis of functionalized nanoscale molecular rods of defined length. J. Am. Chem. Soc. 125, 4703–4704 (2003). doi: 10.1021/ja0293958 CrossRefGoogle Scholar
  8. 8.
    Hla, S.-W.: STM single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 23, 1351–1360 (2005).doi: 10.1116/1.1990161
  9. 9.
    Hahn, J.R., Ho, W.: Oxidation of a single carbon monoxide molecule manipulated and induced with a scanning tunneling microscope. Phys. Rev. Lett. 87, 166102 (2001). doi: 10.1103/PhysRevLett.87.166102 ADSCrossRefGoogle Scholar
  10. 10.
    Lyding, J.W., Shen, T.-C., Hubacek, J.S., Tucker, J.R., Abeln, G.C.: Nanoscale patterning and oxidation of H-passivated Si(100)-2x1 surfaces with an ultrahigh vacuum scanning tunneling microscope. Appl. Phys. Lett. 64, 2010 (1994). doi: 10.1063/1.111722 ADSCrossRefGoogle Scholar
  11. 11.
    Randall, J.N., Ballard, J.B., Lyding, J.W., Schmucker, S., Von Ehr, J.R., Saini, R., Xu, H., Ding, Y.: Atomic precision patterning on Si: an opportunity for a digitized process. Microelectron. Eng. 87, 955–958 (2010). doi: 10.1016/j.mee.2009.11.143 CrossRefGoogle Scholar
  12. 12.
    Hersam, M.C., Guisinger, N.P., Lee, J., Cheng, K., Lyding, J.W.: Variable temperature study of the passivation of dangling bonds at Si(100)-2 × 1 reconstructed surfaces with H and D. Appl. Phys. Lett. 80, 201 (2002). doi: 10.1063/1.1431689 ADSCrossRefGoogle Scholar
  13. 13.
    Schofield, S.R., Curson, N.J., Simmons, M.Y., Ruess, F.J., Hallam, T., Oberbeck, L., Clark, R.G.: Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104 (2003) doi: 10.1103/PhysRevLett.91.136104 Google Scholar
  14. 14.
    Tong, X., Wolkow, R.A.: Electron-induced H atom desorption patterns created with a scanning tunneling microscope: implications for controlled atomic-scale patterning on H-Si(1 0 0). Surf. Sci. Lett. 600, L199–L203 (2006). doi: 10.1016/j.susc.2006.06.038 ADSCrossRefGoogle Scholar
  15. 15.
    Bedair, S.M: Atomic layer epitaxy deposition processes. J. Vac. Sci. Technol. B 12, 179–185 (1994) doi: 10.1116/1.587179 Google Scholar
  16. 16.
    Suda, Y., Misato, Y., Shiratori, D.: Si atomic-layer epitaxy using thermally cracked Si2H6. Jpn. J. Appl. Phys. 38, 2390–2392 (1999) doi: 10.1143/JJAP.38.2390 Google Scholar
  17. 17.
    Yang, J.K.W., Cord, B., Berggren, K.K.: Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography. J. Vac. Sci. Tech. B 27, 2622–2627 (2009). doi: 10.1116/1.3253652 CrossRefGoogle Scholar
  18. 18.
    Private communication with Joe Lyding University of IllinoisGoogle Scholar
  19. 19.
    Shen, T.-C., Wang, C., Abeln, G.C., Tucker, J.R., Lyding, J.W., Avouris, Ph, Walkup, R.E.: Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 268, 1590 (1995). doi: 10.1126/science.268.5217.1590 ADSCrossRefGoogle Scholar
  20. 20.
    Hashizume, T., Heike, S., Lutwyche, M.I., Watanabe, S., Nakajima, K., Nishi, T., Wada, Y.: Jpn. J. Appl. Phys. Pt. 2 35, L1085–L1088 (1996). doi: 10.1143/JJAP.35.L1085
  21. 21.
    Schmucker, S.W., Kumar, N., Abelson, J.R., Daly, S.R., Girolami, G.S., Lyding, J.W.: Field-directed sputter sharpening for tailored probe materials and atomic-scale lithography. submitted for publicationGoogle Scholar
  22. 22.
    Lyding, J.W., Schmucker, S.W.: Nanometer-scale sharpening of conductor tips. U.S. Patent Application No. 11/740, 678, Filed April 26, 2007Google Scholar
  23. 23.
  24. 24.
    Zandvliet, H.J.W., Zoethout, E., Wulfhekel, W., Poelsema, B.: Origin of roughening in epitaxial growth of silicon on Si(001) and Ge(001) surfaces. Surf. Sci. 482–485, 391–395 (2001). doi: 10.1016/S0039-6028(01)00807-X CrossRefGoogle Scholar
  25. 25.
    Yoder, N.L., Fakonas, J.S., Hersam, M.C.: Control and characterization of cyclopentene unimolecular dissociation on Si(100) with scanning tunneling microscopy. J. Am. Chem. Soc. 131, 10059 (2009). doi: 10.1021/ja9010546 CrossRefGoogle Scholar
  26. 26.
    Wolkow, R.A.: Controlled molecular adsorption on silicon: laying a foundation for molecular devices. Annu. Rev. Phys. Chem. 50, 413–441 (1999). doi: 10.1146/annurev.physchem.50.1.413 ADSCrossRefGoogle Scholar
  27. 27.
    Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S.B., Krstic, P.S., Lindsay, S., Ling, X.S., Mastrangelo, C.H., Meller, A., Oliver, J.S., Pershin, Y.V., Ramsey, J.M., Riehn, R., Soni, G.V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., Schloss, J.A.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008). doi: 10.1038/nbt.1495 CrossRefGoogle Scholar
  28. 28.
    O’Brien, J.L., Schofield, S.R., Simmons, M.Y., Clark, R.G., Dzurak, A.S., Curson, N.J., Kane, B.E., McAlpine, N.S., Hawley, M.E., Brown, G.W.: Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64, 161401-04(R) (2001). doi: 10.1103/PhysRevB.64.161401
  29. 29.
    Simmons, M.Y., Schofield, S.R., O’Brien, J.L., Curson, N.J., Oberbeck, L., Hallam, T., Clark, R.G.: Towards the atomic-scale fabrication of a silicon-based solid state quantum computer. Surf. Sci. 532–535, 1209–1218 (2003). doi: 10.1016/S0039-6028(03)00485-0 CrossRefGoogle Scholar
  30. 30.
    Tom Kenny of Stanford placed an order for 10, 000 NEMS resonators during the Technologies for Future Micro-Nano Manufacturing Workshop August 8–10, 2011Google Scholar
  31. 31.
    Petric, P., Bevis, C., Carroll, A., Percy, H., Zywno, M., Standiford, K., Brodie, A., Bareket, N., Grella, L.: REBL: a novel approach to high speed maskless electron beam direct write lithography. JVST-B 27, 161–166 (2009). doi: 10.1116/1.3054281 ADSGoogle Scholar
  32. 32.
    Wieland, M.J., de Boer, G., ten Berge, G.F., van Kervinck, M., Jager, R., Peijster, J.J.M., Slot, E., Steenbrink, S.W.H.K., Teepen, T.F., Kampherbeek, B.J.: MAPPER: high-throughput maskless lithography. Proc. SPIE 7637, 76370F (2010). doi: 10.1117/12.849480 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • John N. Randall
    • 1
    Email author
  • James R. Von Ehr
    • 1
  • Joshua Ballard
    • 1
  • James Owen
    • 1
  • Rahul Saini
    • 1
  • Ehud Fuchs
    • 1
  • Hai Xu
    • 2
  • Shi Chen
    • 2
  1. 1.Zyvex Labs LLCRichardsonUSA
  2. 2.Zyvex Asia Pte LtdSingaporeSingapore

Personalised recommendations