Skip to main content

The DUF Project: A UHV Factory for Multi-Interconnection of a Molecule Logic Gates on Insulating Substrate

  • Conference paper
  • First Online:
Atomic Scale Interconnection Machines

Abstract

The scientific and technical challenges involved in the building of the planar electrical connection of an atomic scale circuit to N electrodes (N > 2) on insulating substrates are presented. In the Nanoscience group of Toulouse, the UHV factory has been developed since ten years in order to realize under UHV the five levels of interconnections on insulating substrate, to characterize by NC-AFM the different steps and to measure the electrical properties of the realized device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heinz, K., Bernhardt, J., Schardt, J., Starke, U.: Functional surface reconstructions of hexagonal SiC. J. Phys. Condens. Matter 16, S1705 (2004)

    Article  ADS  Google Scholar 

  2. Feenstraa, R.M., Dong, Y., Lee, D.C.: Recent developments in surface studies of GaN and AlN. J. Vac. Sci. Technol. B 23, 1174 (2005)

    Article  Google Scholar 

  3. Schönberger, U., Aryasetiawan, F.: Bulk and surface electronic structures of MgO. Phys. Rev. B 52, 8788–8793 (1995)

    Article  ADS  Google Scholar 

  4. Giessibl, F.J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003)

    Google Scholar 

  5. Morita, S., Wiesendanger, R., Meyer, E.: Noncontact Atomic Force Microscopy. Noncontact Atomic Force Microscopy. Springer, Berlin (2002)

    Google Scholar 

  6. Zhong, Q., Innis, D., Kjoller, K., Ellings, V.B.: Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. 290, L688 (1993)

    Google Scholar 

  7. Albrecht, T.R., Grutter, P., Horne, H.K., Rugar, D.: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668 (1991)

    Google Scholar 

  8. Giessibl, F.: Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy. J. Sci. 267, 68 (1995)

    Google Scholar 

  9. Kitamura, S., Iwatsuki, M.: Observation of 7 × 7 reconstructed structure on the Silicon (111) surface using ultrahigh vacuum noncontact atomic force microscopy. Jpn. J. Appl. Phys. Part 2 34, L145 (1995)

    Google Scholar 

  10. Fukuma, T., Higgins, M.J., Jarvis, S.: Direct imaging of Lipid-Ion network formation under physiological conditions by frequency modulation atomic force microscopy. Phys. Rev. Lett. 98, 106101 (2007)

    Google Scholar 

  11. Venegas de la Cerda, M.A., Abad, J., Madgavkar, A., Martrou, D., Gauthier, S.: Step-induced tip polarity reversal investigated by dynamic force microscopy on KBr(001). Nanotechnology 19, 045503 (2008). doi: 10.1088/0957-4484/19/04/045503

  12. Bammerlin, M., Lüthi, R., Meyer, E., Baratoff, A., Lü, J., Guggisberg, M., Loppacher, C., Gerber, C., Güntherodt, H.: Dynamic SFM with true atomic resolution on alkali halide surfaces. J. Appl. Phys. A 66, S293 (1998)

    Google Scholar 

  13. Barth, C., Henry, C. R.: Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys. Rev. Lett. 91, 196102 (2003)

    Google Scholar 

  14. Barth, C., Reichling, M.: Imaging the atomic arrangements on the high-temperature reconstructed alpha-Al2O3(0001) surface. Nature 414, 54 (2001)

    Google Scholar 

  15. Barth, C., Foster, A.S., Reichling, M., Shluger, A.L.: Contrast formation in atomic resolution scanning force microscopy on CaF2(111): experiment and theory. J. Phys. Condens. Matter 13, 2061 (2001)

    Google Scholar 

  16. Pfeiffer, O., Gnecco, E., Zimmerli, L., Maier, S., Meyer, E., Nony, L., Bennewitz, R., Diedrich, F., Fang, H., Bonifazi, D.: Force microscopy on insulators: imaging of organic molecules. J. Phys.: Conf. Ser. 19, 166 (2005)

    Google Scholar 

  17. Bennewitz, R.: Structured surfaces of wide band gap insulators as templates for overgrowth of adsorbates. J. Phys. Condens. Matter 18, R417 (2006)

    Google Scholar 

  18. Nony, L., Gnecco, E., Baratoff, A., Alkauskas, A., Bennewitz, R., Pfeiffer, O., Maier, S., Wetzel, A., Meyer, E., Gerber, C.: Observation of individual molecules trapped on a nanostructured insulator. Nano Lett. 11, 2185–2189 (2004)

    Article  ADS  Google Scholar 

  19. Burke, S.A., Ji, W., Mativetsky, J.M., Topple, J.M., Fostner, S., Gao, H.-J., Guo, H., Grütter, P.: Strain induced dewetting of a molecular system: bimodal growth of PTCDA on NaCl. Phys. Rev. Lett. 100, 186104 (2008)

    Article  ADS  Google Scholar 

  20. Dienel, T., Loppacher, C., Mannsfeld, S.C.B., Forker, R., Fritz, T.: Growth-mode-induced narrowing of optical spectra of an organic adlayer. Adv. Mat. 20, 959 (2008)

    Article  Google Scholar 

  21. Fendrich, M., Kunstmann, T.: Organic molecular nanowires: N,N′-dimethylperylene-3,4,9,10-bis(dicarboximide) on KBr(001). Appl. Phys. Lett. 91, 023101 (2007)

    Google Scholar 

  22. Hinaut, A., Lekhal, K., Aivazian, G., Bataille, S., Gourdon, A., Martrou, D., Gauthier, S.: NC-AFM study of the adsorption of Hexamethoxytriphenylene on KBr(001). J. Phys. Chem 115(27), 13338–13342 (2011). doi:10.1021/jp202873f

    Google Scholar 

  23. Joachim, C., Martrou, D., Rezeq, M., Troadec, C., Jie, D., Chandrasekhar, N., Gauthier, S.: Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J. Phys. Condens. Matter 22(8), 084025 (2010). doi 10.1088/0953-8984/22/8/084025

    Google Scholar 

  24. Joachim, C., Ratner, M.A.: Molecular electronics: some views on transport junctions and beyond. PNAS 102, 8801 (2005)

    Google Scholar 

  25. Bauer, E.: Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I. Zeit. Kristall. 110, 372 (1958)

    Article  Google Scholar 

  26. Noguera, C.: Physics and Chemistry at Oxide Surfaces. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  27. Pezzagna, S., Vézian, S., Brault, J., Massies, J.: Layer-by-layer epitaxial growth of Mg on GaN(0001). Appl. Phys. Lett. 92, 233111(2008)

    Google Scholar 

  28. Lüthi, R., Schittler, R.R., Brugger, J., Vettiger, P., Welland, M.E., Gimzewski, J.K.: Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods. Appl. Phys. Lett. 75, 1314 (1999)

    Article  ADS  Google Scholar 

  29. Zahl, P., Bammerlin, M., Meyer, G., Schlittler, R.R.: All-in-one static and dynamic nanostencil atomic force microscopy/scanning tunneling microscopy system. Rev. Sci. Instrum. 76, 023707 (2005)

    Article  ADS  Google Scholar 

  30. Egger, S., Llie, A., Fu, T., Chongsathien, J., Kang, D., Welland, M.E.: Dynamic shadow mask technique: a universal tool for nanoscience. Nano Lett. 5, 15 (2005)

    Article  ADS  Google Scholar 

  31. Guo, H., Martrou, D., Zambelli, T., Polesel-Maris, J., Piednoir, A., Dujardin, E., Gauthier, S., van den Boogaart, M.A.F., Doeswijk, L.M., Brugger, J.: Nanostenciling for fabrication and interconnection of nanopatterns and microelectrodes. Appl. Phys. Lett. 90, 093113 (2007). doi: 10.1063/1.2710473

    Google Scholar 

  32. Guo, H., Martrou, D., Zambelli, T., Dujardin, E., Gauthier, S.: Development of UHV dynamic nanostencil for surface patterning. Rev. Sci. Instrum. 79, 103904 (2008). doi:10.1063/1.2999547

    Article  ADS  Google Scholar 

  33. Coutrot, A.-L., Roblin, C., Lafosse, X., David, C., Madouri, A., Laloo, R., Martrou, D.: New SiC microcantilever electric connection array for single molecule electrical investigation. Microelectron. Eng. 86, 119 (2009). doi:10.1016/j.mee.2009.01.069

    Article  Google Scholar 

  34. Mei, W.N., Boyer, L.L., Ossowski, M.M., Stokes, H.T.: Phys. Rev. B 61, 11425 (2000)

    Google Scholar 

  35. Roessler, D.M., Walker, W.C.: Phys. Rev. 159, 733–738 (1967)

    Google Scholar 

  36. French, R.H.: J. Am. Ceram. Soc. 73, 477 (1990)

    Google Scholar 

  37. Rubloff, G.W.: Phys. Rev. B 5, 662 (1972)

    Google Scholar 

  38. Cimalla, V., Pezoldt, J., Ambacher, O.: J. Phys. D: Appl. Phys. 40, 6386 (2007)

    Google Scholar 

Download references

Acknowledgments

The design and the realization of the UHV factory and the studies made with it was supported by European fundings : AtMol project “Atomic Scale and single Molecule Logic gate Technologies” (Contract No ICT-2009.8.7-270028), Artist project « Alternative routes toward information storage and transport at the atomic and molecular scale » (Contract No ICT-2007.8.0-243421), Pico-Inside project « Computing Inside a Single Molecule Using Atomic Scale Technologies » (Contract No IST-2004-2.3.4.2-15847), NaPa project “Emerging Nanopatterning Methods” (Contract No NMP4-CT-2003-500120), CHIC project “Consortium for Hamiltonian Intramolecular Computing” (Contract No IST-2001-33578), and French national funding : CPER 2007-2013 Campus Gaston Dupouy “Des nanomatériaux aux nanosciences moléculaires. et aux picotechnologies”, NanoSens (Contract No ANR-08-NANO-017), MolSiC (Contract No ANR-08-NANO-030), DiNaMo (Contract No ANR-05-NANO-014), CPER 2002-2007 “Nanosciences, Nanotechnologies et Nanomatériaux”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Martrou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martrou, D. et al. (2012). The DUF Project: A UHV Factory for Multi-Interconnection of a Molecule Logic Gates on Insulating Substrate. In: Joachim, C. (eds) Atomic Scale Interconnection Machines. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28172-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28172-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28171-6

  • Online ISBN: 978-3-642-28172-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics