The DUF Project: A UHV Factory for Multi-Interconnection of a Molecule Logic Gates on Insulating Substrate

  • D. Martrou
  • L. Guiraud
  • R. Laloo
  • B. Pecassou
  • P. Abeilhou
  • O. Guillermet
  • E. Dujardin
  • S. Gauthier
  • J. Polesel Maris
  • M. Venegas
  • A. Hinault
  • A. Bodin
  • F. Chaumeton
  • A. Piednoir
  • H. Guo
  • T. Leoni
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

The scientific and technical challenges involved in the building of the planar electrical connection of an atomic scale circuit to N electrodes (N > 2) on insulating substrates are presented. In the Nanoscience group of Toulouse, the UHV factory has been developed since ten years in order to realize under UHV the five levels of interconnections on insulating substrate, to characterize by NC-AFM the different steps and to measure the electrical properties of the realized device.

Keywords

Atomic Scale Effusion Cell Kelvin Probe Force Microscopy Electrospray Needle Atomic Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The design and the realization of the UHV factory and the studies made with it was supported by European fundings : AtMol project “Atomic Scale and single Molecule Logic gate Technologies” (Contract No ICT-2009.8.7-270028), Artist project « Alternative routes toward information storage and transport at the atomic and molecular scale » (Contract No ICT-2007.8.0-243421), Pico-Inside project « Computing Inside a Single Molecule Using Atomic Scale Technologies » (Contract No IST-2004-2.3.4.2-15847), NaPa project “Emerging Nanopatterning Methods” (Contract No NMP4-CT-2003-500120), CHIC project “Consortium for Hamiltonian Intramolecular Computing” (Contract No IST-2001-33578), and French national funding : CPER 2007-2013 Campus Gaston Dupouy “Des nanomatériaux aux nanosciences moléculaires. et aux picotechnologies”, NanoSens (Contract No ANR-08-NANO-017), MolSiC (Contract No ANR-08-NANO-030), DiNaMo (Contract No ANR-05-NANO-014), CPER 2002-2007 “Nanosciences, Nanotechnologies et Nanomatériaux”.

References

  1. 1.
    Heinz, K., Bernhardt, J., Schardt, J., Starke, U.: Functional surface reconstructions of hexagonal SiC. J. Phys. Condens. Matter 16, S1705 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Feenstraa, R.M., Dong, Y., Lee, D.C.: Recent developments in surface studies of GaN and AlN. J. Vac. Sci. Technol. B 23, 1174 (2005)CrossRefGoogle Scholar
  3. 3.
    Schönberger, U., Aryasetiawan, F.: Bulk and surface electronic structures of MgO. Phys. Rev. B 52, 8788–8793 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Giessibl, F.J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003)Google Scholar
  5. 5.
    Morita, S., Wiesendanger, R., Meyer, E.: Noncontact Atomic Force Microscopy. Noncontact Atomic Force Microscopy. Springer, Berlin (2002)Google Scholar
  6. 6.
    Zhong, Q., Innis, D., Kjoller, K., Ellings, V.B.: Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. 290, L688 (1993)Google Scholar
  7. 7.
    Albrecht, T.R., Grutter, P., Horne, H.K., Rugar, D.: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668 (1991)Google Scholar
  8. 8.
    Giessibl, F.: Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy. J. Sci. 267, 68 (1995)Google Scholar
  9. 9.
    Kitamura, S., Iwatsuki, M.: Observation of 7 × 7 reconstructed structure on the Silicon (111) surface using ultrahigh vacuum noncontact atomic force microscopy. Jpn. J. Appl. Phys. Part 2 34, L145 (1995)Google Scholar
  10. 10.
    Fukuma, T., Higgins, M.J., Jarvis, S.: Direct imaging of Lipid-Ion network formation under physiological conditions by frequency modulation atomic force microscopy. Phys. Rev. Lett. 98, 106101 (2007)Google Scholar
  11. 11.
    Venegas de la Cerda, M.A., Abad, J., Madgavkar, A., Martrou, D., Gauthier, S.: Step-induced tip polarity reversal investigated by dynamic force microscopy on KBr(001). Nanotechnology 19, 045503 (2008). doi:  10.1088/0957-4484/19/04/045503
  12. 12.
    Bammerlin, M., Lüthi, R., Meyer, E., Baratoff, A., Lü, J., Guggisberg, M., Loppacher, C., Gerber, C., Güntherodt, H.: Dynamic SFM with true atomic resolution on alkali halide surfaces. J. Appl. Phys. A 66, S293 (1998)Google Scholar
  13. 13.
    Barth, C., Henry, C. R.: Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys. Rev. Lett. 91, 196102 (2003)Google Scholar
  14. 14.
    Barth, C., Reichling, M.: Imaging the atomic arrangements on the high-temperature reconstructed alpha-Al2O3(0001) surface. Nature 414, 54 (2001)Google Scholar
  15. 15.
    Barth, C., Foster, A.S., Reichling, M., Shluger, A.L.: Contrast formation in atomic resolution scanning force microscopy on CaF2(111): experiment and theory. J. Phys. Condens. Matter 13, 2061 (2001)Google Scholar
  16. 16.
    Pfeiffer, O., Gnecco, E., Zimmerli, L., Maier, S., Meyer, E., Nony, L., Bennewitz, R., Diedrich, F., Fang, H., Bonifazi, D.: Force microscopy on insulators: imaging of organic molecules. J. Phys.: Conf. Ser. 19, 166 (2005)Google Scholar
  17. 17.
    Bennewitz, R.: Structured surfaces of wide band gap insulators as templates for overgrowth of adsorbates. J. Phys. Condens. Matter 18, R417 (2006)Google Scholar
  18. 18.
    Nony, L., Gnecco, E., Baratoff, A., Alkauskas, A., Bennewitz, R., Pfeiffer, O., Maier, S., Wetzel, A., Meyer, E., Gerber, C.: Observation of individual molecules trapped on a nanostructured insulator. Nano Lett. 11, 2185–2189 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Burke, S.A., Ji, W., Mativetsky, J.M., Topple, J.M., Fostner, S., Gao, H.-J., Guo, H., Grütter, P.: Strain induced dewetting of a molecular system: bimodal growth of PTCDA on NaCl. Phys. Rev. Lett. 100, 186104 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Dienel, T., Loppacher, C., Mannsfeld, S.C.B., Forker, R., Fritz, T.: Growth-mode-induced narrowing of optical spectra of an organic adlayer. Adv. Mat. 20, 959 (2008)CrossRefGoogle Scholar
  21. 21.
    Fendrich, M., Kunstmann, T.: Organic molecular nanowires: N,N′-dimethylperylene-3,4,9,10-bis(dicarboximide) on KBr(001). Appl. Phys. Lett. 91, 023101 (2007)Google Scholar
  22. 22.
    Hinaut, A., Lekhal, K., Aivazian, G., Bataille, S., Gourdon, A., Martrou, D., Gauthier, S.: NC-AFM study of the adsorption of Hexamethoxytriphenylene on KBr(001). J. Phys. Chem 115(27), 13338–13342 (2011). doi: 10.1021/jp202873f Google Scholar
  23. 23.
    Joachim, C., Martrou, D., Rezeq, M., Troadec, C., Jie, D., Chandrasekhar, N., Gauthier, S.: Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J. Phys. Condens. Matter 22(8), 084025 (2010). doi  10.1088/0953-8984/22/8/084025 Google Scholar
  24. 24.
    Joachim, C., Ratner, M.A.: Molecular electronics: some views on transport junctions and beyond. PNAS 102, 8801 (2005)Google Scholar
  25. 25.
    Bauer, E.: Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I. Zeit. Kristall. 110, 372 (1958)CrossRefGoogle Scholar
  26. 26.
    Noguera, C.: Physics and Chemistry at Oxide Surfaces. Cambridge University Press, Cambridge (1996)Google Scholar
  27. 27.
    Pezzagna, S., Vézian, S., Brault, J., Massies, J.: Layer-by-layer epitaxial growth of Mg on GaN(0001). Appl. Phys. Lett. 92, 233111(2008)Google Scholar
  28. 28.
    Lüthi, R., Schittler, R.R., Brugger, J., Vettiger, P., Welland, M.E., Gimzewski, J.K.: Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods. Appl. Phys. Lett. 75, 1314 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Zahl, P., Bammerlin, M., Meyer, G., Schlittler, R.R.: All-in-one static and dynamic nanostencil atomic force microscopy/scanning tunneling microscopy system. Rev. Sci. Instrum. 76, 023707 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Egger, S., Llie, A., Fu, T., Chongsathien, J., Kang, D., Welland, M.E.: Dynamic shadow mask technique: a universal tool for nanoscience. Nano Lett. 5, 15 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Guo, H., Martrou, D., Zambelli, T., Polesel-Maris, J., Piednoir, A., Dujardin, E., Gauthier, S., van den Boogaart, M.A.F., Doeswijk, L.M., Brugger, J.: Nanostenciling for fabrication and interconnection of nanopatterns and microelectrodes. Appl. Phys. Lett. 90, 093113 (2007). doi:  10.1063/1.2710473 Google Scholar
  32. 32.
    Guo, H., Martrou, D., Zambelli, T., Dujardin, E., Gauthier, S.: Development of UHV dynamic nanostencil for surface patterning. Rev. Sci. Instrum. 79, 103904 (2008). doi: 10.1063/1.2999547 ADSCrossRefGoogle Scholar
  33. 33.
    Coutrot, A.-L., Roblin, C., Lafosse, X., David, C., Madouri, A., Laloo, R., Martrou, D.: New SiC microcantilever electric connection array for single molecule electrical investigation. Microelectron. Eng. 86, 119 (2009). doi: 10.1016/j.mee.2009.01.069 CrossRefGoogle Scholar
  34. 34.
    Mei, W.N., Boyer, L.L., Ossowski, M.M., Stokes, H.T.: Phys. Rev. B 61, 11425 (2000)Google Scholar
  35. 35.
    Roessler, D.M., Walker, W.C.: Phys. Rev. 159, 733–738 (1967)Google Scholar
  36. 36.
    French, R.H.: J. Am. Ceram. Soc. 73, 477 (1990)Google Scholar
  37. 37.
    Rubloff, G.W.: Phys. Rev. B 5, 662 (1972)Google Scholar
  38. 38.
    Cimalla, V., Pezoldt, J., Ambacher, O.: J. Phys. D: Appl. Phys. 40, 6386 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • D. Martrou
    • 1
  • L. Guiraud
    • 1
  • R. Laloo
    • 1
  • B. Pecassou
    • 1
  • P. Abeilhou
    • 1
  • O. Guillermet
    • 1
  • E. Dujardin
    • 1
  • S. Gauthier
    • 1
  • J. Polesel Maris
    • 1
  • M. Venegas
    • 1
  • A. Hinault
    • 1
  • A. Bodin
    • 1
  • F. Chaumeton
    • 1
  • A. Piednoir
    • 1
  • H. Guo
    • 1
  • T. Leoni
    • 1
  1. 1.Nanoscience GroupCEMES-CNRSToulouse CedexFrance

Personalised recommendations