Advertisement

Atomic Scale Interconnection Machine

  • O. A. Neucheva
  • R. Thamankar
  • T. L. Yap
  • C. Troadec
  • J. Deng
  • C. Joachim
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

An atomic scale multiprobe interconnection machine is described in the context of building of the molecular devices. It combines various techniques for fabrication and surface analysis. The characterization part consists of low temperature scanning tunneling microscope (LT-STM), four probes variable temperature scanning tunneling microscope (Multiprobe), high resolution scanning electron microscope (SEM). The fabrication part has field ion microscope (FIM), evaporators and nanoimprinter. The characteristics of every part of the instrument and the preliminary experiments on Si(100) surface are discussed.

Keywords

Scanning Tunneling Microscope Vibration Isolation Liquid Helium Temperature Preparation Chamber Molecular Logic Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Joachim, C., Martrou, D., Rezeq, M., Troadec, C., Deng, Jie., Chandrasekhar, N., Gauthier, S.: Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J. Phys. Cond. Matter 22, 084025 (2010)Google Scholar
  2. 2.
    Duchemin, I., Renaud, N., Joachim, C.: An intramolecular digital 1/2 adder with tunneling current drive and read-outs. Chem. Phys. Lett. 452, 269 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Soe, W.H., Manzano, C., De Sarkar, A., Ample, F., Chandrasekhar, N., Renaud, N., de Mendoza, P., Echavarren, A.M.: Hliwa, M., Joachim, C.: Demonstration of a NOR logic gate using a single molecule and two surface gold atoms to encode the logical input. Phys. Rev. B 83, 155443 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Renaud, N., Hliwa, M., Joachim, C.: Single molecule logical devices. In: Topics in Current Chemistry, pp. 1–52. Springer, Berlin, Heidelberg (2011)Google Scholar
  5. 5.
    Rezeq, M., Joachim, C., Chandrasekhar, N.: Confinement of the field electron emission to atomic sites on ultra sharp tips. Surf. Sci. 603, 697 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Bellec, A., Riedel, D., Dujardin, G.: Dihydride dimer structures on the Si(100): H surface studied by low-temperature scanning tunneling microscopy. Phys. Rev. B 78, 165302 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Hla, S.-W., Braun, K.F., Iancu, V., Deshpande, A.: Single atom extraction by scanning tunneling microscope tip-crash and nanoscale surface engineering. Nano Lett. 4, 1997 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Ramesh, T.: Surface Conductance Measurements on a MoS2 Surface Using a UHV-Nanoprobe System. In this volume, (2012)Google Scholar
  9. 9.
    Cedric, T.: Solid State Nano Gears Manipulations. In this volume, (2012)Google Scholar
  10. 10.
    Ruess, F.J., Oberbeck, L., Simmons, M.Y., Goh, K.E.J., Hamilton, A.R., Hallam, T., Schofield, S.R., Curson, N.J., Clark, R.J.: Toward atomic-scale device fabrication in Silicon using scanning probe microscopy. Nano Lett. 4(10), 1969–1973 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Latyshev, A.V., Aseev, A.L., Krasilnikov, A.B., Stenin, S.I.: Transformations on clean Si(111) stepped surface during sublimation. Surf. Sci. 213, 1 (1988)Google Scholar
  12. 12.
    Deng, J., Troadec, C., Kim, H.H., Joachim, C.: Direct transfer of gold nanoislands from a MoS2 stamp to a Si–H surface. J. Vac. Sci. Technol. B 28, 3 (2010)Google Scholar
  13. 13.
    Yang, J., Deng, J., Chandrasekhar, N., Joachim, C.: UHV-STM manipulation of single flat gold nano-islands for constructing interconnection nanopads on MoS2. J. Phys. Conf. Ser. 61, 1288 (2007)Google Scholar
  14. 14.
    Soukiassian, L., Mayne, A.J., Carbone, M., Dujardin, G.: Atomic-scale desorption of H atoms from the Si.100.-2Ã1:H surface: Inelastic electron interactions. Phys. Rev. B 68, 035303 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Doumergue, P., Pizzagalli, L., Joachim, C., Altibelli, A., Baratoff, A.: Conductance of a finite missing hydrogen atomic line on Si(001)-(2 × 1)-H. Phys. Rev. B 59, 15910 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Nozaki, D., Cuniberti, G.: Silicon-based molecular switch junctions. Nano Res. 2(8), 648–659 (2009)CrossRefGoogle Scholar
  17. 17.
    Choi, B.-Y., Kahng, S.-Y., Kim, S., Kim, H., Kim, H.W., Song, Y.J., Ihm, J., Kuk, Y.: Conformational molecular switch of the Azobenzene molecule: A scanning tunneling microscopy study. Phys. Rev. Lett. 96, 156106 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • O. A. Neucheva
    • 1
  • R. Thamankar
    • 1
  • T. L. Yap
    • 1
    • 2
    • 3
  • C. Troadec
    • 1
  • J. Deng
    • 1
  • C. Joachim
    • 1
    • 4
  1. 1.A*STAR (Agency for Science, Technology and Research)Institute of Materials Research and EngineeringSingaporeSingapore
  2. 2.Department of PhysicsNational University of SingaporeSingaporeSingapore
  3. 3.GLOBALFOUNDRIES Singapore Pte LtdSingaporeSingapore
  4. 4.Centre d’Elaboration de Mat′ériaux et d’Etudes Structurales (CEMES-CNRS)Toulouse Cedex 4France

Personalised recommendations