Advertisement

Ultra-Compact Multitip Scanning Probe Microscope with an Outer Diameter of 50 mm

  • Vasily Cherepanov
  • Evgeny Zubkov
  • Hubertus Junker
  • Stefan Korte
  • Marcus Blab
  • Peter Coenen
  • Bert Voigtländer
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

We present a multitip scanning tunneling microscope (STM) where four independent STM units are integrated on a diameter of 50 mm. The coarse positioning of the tips is done under the control of an optical microscope or an SEM in vacuum. The heart of this STM is a new type of piezoelectric coarse approach called Koala Drive which can have a diameter greater than 2.5 mm and a length smaller than 10 mm. Alternating movements of springs move a central tube which holds the STM tip or AFM sensor. This new operating principle provides a smooth travel sequence and avoids shaking which is intrinsically present for nanopositioners based on inertial motion with saw tooth driving signals. Inserting the Koala Drive in a piezo tube for xyz-scanning integrates a complete STM inside a 4 mm outer diameter piezo tube of <10 mm length. The use of the Koala Drive makes the scanning probe microscopy design ultra-compact and accordingly leads to a high mechanical stability. The drive is UHV, low temperature, and magnetic field compatible. The compactness of the Koala Drive allows building a four-tip STM as small as a single-tip STM with a drift of <0.2 nm/min and lowest resonance frequencies of 2.5 (xy) and 5.5 kHz (z). We present examples of the performance of the multitip STM designed using the Koala Drive.

Keywords

Scanning Tunneling Microscope Outer Probe Scanning Probe Scanning Tunneling Microscope Image Central Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to acknowledge Ch. Stampfer for the preparation of the graphene sample.

References

  1. 1.
    Kawamura, M., Paul, N., Cherepanov, V., Voigtländer, B.: Nanowires and nanorings at the atomic level. Phys. Rev. Lett. 91, 096102 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Pan S.H.: International Patent Publication WO 93/19494Google Scholar
  3. 3.
    Pohl D.W.: Dynamic piezoelectric translation devices. Rev. Sci. Instr. 58, 54 (1987)Google Scholar
  4. 4.
    Besocke, K.: An easily operable scanning tunneling microscope. Surf. Sci. 181, 145 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    Frohn, J., Wolf, J.F., Besocke, K., Teske, M.: Coarse tip distance adjustment and positioner for a scanning tunneling microscope. Rev. Sci. Instrum. 60, 1200 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Voigtländer, B., Cherepanov, V., Elsaesser, Ch., Linke, U.: Metal bead crystals for easy heating by direct current. Rev. Sci. Instrum. 79, 033911 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Giessibl, F.J., Pielmeier, F., Eguchi, T., An, T., Hasegawa, Y.: Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys. Rev. B 84, 125409 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Morawski, I., Voigtländer, B.: Simultaneously measured signals in scanning probe microscopy with a needle sensor: Frequency shift and tunneling current. Rev. Sci. Instr. 81, 033703 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Morawski, I., Blicharski, J., Voigtländer, B.: Voltage preamplifier for extensional quartz sensors used in scanning force microscopy. Rev. Sci. Instrum. 82, 063701 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Gurvitch, M., Levi, A.F.J., Tung, R.T., Nakahara, S.: Epitaxial yttrium silicide on (111) silicon by vacuum annealing. Appl. Phys. Lett. 51, 311 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    Siegal, M.P., Kaatz, F.H., Graham, W.R., Santiago, J.J., Van der Spiegel, J.: Formation of epitaxial yttrium silicide on (111) silicon. J. Appl. Phys. 66, 2999 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vasily Cherepanov
    • 1
  • Evgeny Zubkov
    • 1
  • Hubertus Junker
    • 1
  • Stefan Korte
    • 1
  • Marcus Blab
    • 1
  • Peter Coenen
    • 1
  • Bert Voigtländer
    • 1
  1. 1.JARA-Fundamentals of Future Information TechnologyPeter Grünberg Institut (PGI-3), Forschungszentrum JülichJülichGermany

Personalised recommendations