Advertisement

Probing Single Molecular Motors on Solid Surface

  • Haiming Guo
  • Yeliang Wang
  • Min Feng
  • Li Gao
  • Hongjun Gao
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

Understanding structures and mechanisms of single molecular motors on solid surfaces is of critical importance for nanoscale engineering and bottom-up construction of complex devices at single molecular scale. In this chapter, two different kinds of single molecular motors at surfaces are studied with scanning tunneling microscopy (STM) technique. We discuss the structural and conductance transitions of one H2 rotaxane molecule at the sub-rotaxane scale, and then present a molecular rotor with a fixed off-center axis formed by chemical bonding on Au(111) substrate. These results represent important advances in single molecular-based machines and devices.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Molecular Rotor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful for S. X. Du, D. X. Shi, Q. Liu, H. G. Zhang,X. Lin, Z. H. Cheng, Z. T. Deng, N. Jiang, W. Ji, J. T. Sun, Y. Y. Zhang for invaluable assistance in experiments and theoretical simulations. This research is supported by Chinese Academy of Sciences, the Natural Science Foundation of China (NSFC) and the Chinese National “863” and “973” projects.

References

  1. 1.
    Eigler, D.M., Lutz, C.P., Rudge, W.E.: An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Barth, J.V., Costantini, G., Kern, K.: Engineering atomic and molecular nanostructures on surfaces. Nature 437, 671 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Gao, H.J., Gao, L.: Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-assembly, and applications. Prog. Surf. Sci. 85, 28 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    Schliwa, M., Woehlke, G.: Molecular motors. Nature 422, 759 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Schnitzer, M.J., Block, S.M.: Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Atsumi, T., Mccarter, L., Imae, T.: Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355, 182 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    Park, H., Park, J., Lim, A.K.L., Anderson, E.H., Alivisatos, A.P., McEuen, P.L.: Nano-mechanical oscillations in a single-C60 transistor. Nature. 407, 57 (2000)Google Scholar
  9. 9.
    Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Stipe, B.C., Rezaei, M.A., Ho, W.: Inducing and viewing the rotational motion of a single molecule. Science 279, 1907 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Zheng, X.L., Mulcahy, M.E., Horinek, D., Galeotti, F., Magnera, T.F., Michl, J.: Dipolar and nonpolar altitudinal molecular rotors mounted on an Au(111) surface. J. Am. Chem. Soc. 126, 4540 (2004)CrossRefGoogle Scholar
  12. 12.
    Schliwa, M.: Molecular Motors. Wiley-VCH, Weinheim, Germany (2003)Google Scholar
  13. 13.
    Clayden, J., Pink, J.H.: Concerted rotation in a tertiary aromatic amide: Towards a simple molecular gear. Chem. Int. Ed. 37, 1937 (1998)CrossRefGoogle Scholar
  14. 14.
    Huck, N.P.M., Jager, W.F., de Lange, B., Feringa, B.L.: Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Bissell, R.A., C′ordova, E., Kaifer, A.E., Stoddart, J.F.: A chemically and electrochemically switchable molecular shuttle. Nature 369, 133 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Ashton, P.R., Ballardini, R., Balzani, V., Baxter, I., Credi, A., Fyfe, M.C.T., Gandolfi, M.T., Lpez, M.G., Daz, M.V.M., Piersanti, A., Spencer, N., Stoddart, J.F., Venturi, M., White, A.J.P., Williams, D.J.: Acid−Base controllable molecular shuttles. J. Am. Chem. Soc. 120, 11932 (1998)CrossRefGoogle Scholar
  17. 17.
    Bedard, T.C., Moore, J.S.: Design and synthesis of molecular turnstiles. J. Am. Chem. Soc. 117, 10662 (1995)CrossRefGoogle Scholar
  18. 18.
    Kelly, T.R., Tellitu, I., Sestelo, J.P.: In search of molecular ratchets. Angew. Chem. Int. Ed. Engl. 36, 1866 (1997)CrossRefGoogle Scholar
  19. 19.
    Grill, L., Rieder, K.H., Moresco, F., Rapenne, G., Stojkovic, S., Bouju, X., Joachim, C.: Rolling a single molecular wheel at the atomic scale. Nat. Nanotechnol. 2, 95 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Joachim, C., Tang, H., Moresco, F., Rapenne, G., Meyer, G.: The design of a nanoscale molecular barrow. Nanotechnology 13, 330 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Jimenez, B.G., Rapenne, G.: Technomimetic molecules: synthesis of a molecular wheel-barrow. Tetrahedron Lett. 44, 6261 (2003)Google Scholar
  22. 22.
    Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in thermally driven single-molecule nanocars. Nano Lett. 5, 2330 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Badjic, J.D., Balzani, V., Credi, A., Silvi, S., Stoddart, J.F.: A molecular elevator. Science 303, 1845 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Van Den Broeck, C., Kawai, R.: Brownian refrigerator. Phys. Rev. Lett. 96, 210601 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Juluri, B.K., Kumar, A.S., Liu, Y., Ye, T., Yang, Y.-W., Flood, A.H., Fang, L., Stoddart, J.F., Weiss, P.S., Huang, T.J.: A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3, 291–300 (2009)CrossRefGoogle Scholar
  26. 26.
    Ye, T., Kumar, A.S., Saha, S., Takami, T., Huang, T.J., Stoddart, J.F., Weiss, P.S.: Changing stations in single bistable rotaxane molecules under electrochemical control. ACS Nano 4, 3697–3701 (2010)CrossRefGoogle Scholar
  27. 27.
    Brouwer, A.M., Frochot, C., Gatti, F.G., Leigh, D.A., Mottier, L.C., Paolucci, F., Roffia, S., Wurpel, G.W.H.: Photoinduction of fast, reversible translational motion in ahydro-gen-bonded molecular shuttle. Science 291, 2124 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    Serreli, V., Lee, C.-F., Kay, E.R., Leigh, D.A.: A molecular information ratchet. Nature 445, 523 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Berna, J., Leigh, D.A., Lubomska, M., Mendoza, S.M., Perez, E.M., Rudolf, P., Teobaldi, G., Zerbetto, F.: Macroscopic transport by synthetic molecular machines. Nat. Mater 4, 704 (2005)Google Scholar
  30. 30.
    Anelli, P.L., Spencer, N., Stoddart, J.F.: A molecular shuttle. J. Am. Chem. Soc. 113, 5131 (1991)CrossRefGoogle Scholar
  31. 31.
    Nguyen, T.D., Leung, K.C.F., Liong, M., Pentecost, C.D., Stoddart, J.F., Zink, J.I.: Construction of a pH-driven supramolecular nanovalve. Org. Lett. 8, 3363 (2006)CrossRefGoogle Scholar
  32. 32.
    Collier, C.P., Mattersteig, G., Wong, E.W., Luo, Y., Beverly, K., Sampaio, J., Raymo, F.M., Stoddart, J.F., Heath, J.R.: A [2]Catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    Collier, C.P., Jeppesen, J.O., Luo, Y., Perkins, J., Wong, E.W., Heath, J.R., Stoddart, J.F.: Molecular-based electronically switchable tunnel junction devices. J. Am. Chem. Soc. 123, 12632 (2001)CrossRefGoogle Scholar
  34. 34.
    Jang, Y.H., Hwang, S., Kim, Y.H., Jang, S.S., Goddart, W.A.: Density functional theory studies of the Rotaxane component of the Stoddart−Heath molecular switch. J. Am. Chem. Soc. 126, 12636 (2004)CrossRefGoogle Scholar
  35. 35.
    Deng, W.Q., Muller, R.P., Goddard, W.A., III.: Mechanism of the Stoddart−Heath bistable Rotaxane molecular switch. J. Am. Chem. Soc. 126, 13562 (2004)Google Scholar
  36. 36.
    Rapenne, G.: Synthesis of technomimetic molecules: Towards rotation control in single-molecular machines and motors. Org. Biomol. Chem. 3, 1165–1169 (2005)CrossRefGoogle Scholar
  37. 37.
    Vacek, J., Michl, J.: Artificial surface-mounted molecular rotors: Molecular dynamics simulations. Adv. Funct. Mater. 17, 730 (2007)CrossRefGoogle Scholar
  38. 38.
    Gao, L., Liu, Q., Zhang, Y.Y., Jiang, N., Zhang, H.G., Cheng, Z.H., Qiu, W.F., Du, S.X., Liu, Y.Q., Hofer, W.A., Gao, H.J.: Constructing an array of anchored single-molecule rotors on gold surfaces. Phy. Rev. Lett. 101, 197209 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Zhong, D., Blomker, T., Wedeking, K., Chi, L., Erker, G., Fuchs, H.: Surface-mounted molecular rotors with variable functional groups and rotation radii. Nano Lett. 9, 4387 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Vacek, J., Michl, J.: Molecular dynamics of a grid-mounted molecular dipolar rotor in a rotating electric field. Proc. Natl. Acad. Sci. USA 98, 5481 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Tan, S., Lopez, H.A., Cai, C.W., Zhang, Y.: Optical trapping of single-walled carbon nanotubes. Nano Lett. 4, 1415 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Berna, J., Leigh, D.A., Lubomska, M., Mendoza, S.M., Perez, E.M., Rudolf, P., Teobaldi, G., Zerbetto, F.: Macroscopic transport by synthetic molecular machines. Nat. Mater 4, 704 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Petr, K., Tamar, S.: Current-induced rotation of helical molecular wires. J. Chem. Phys. 123, 184702 (2005)CrossRefGoogle Scholar
  44. 44.
    Green, J.E., Wook Choi, J., Boukai, A., Heath, J.R.A., et al.: 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter. Nature 445, 414 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Kelly, T.R., De Silva, H., Silva, R.A.: Unidirectional rotary motion in a molecular system. Nature 401, 150 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    Astumian, R.D.: Thermodynamics and kinetics of a brownian motor. Science 276, 917 (1997)CrossRefGoogle Scholar
  47. 47.
    Davis A.P.: Molecular machines: Knowledge is power! Nat. Nanotechnol. 2, 135 (2007)Google Scholar
  48. 48.
    Gimzewski, J.K., Joachim, C., Schlittler, R.R., Langlais, V., Tang, H., Johannsen, I.: Rotation of a single molecule within a supramolecular bearing. Science 281, 531 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    Bellisario, D.O., Baber, A.E., Tierney, H.L., Sykes, E.C.H.: Engineering dislocation networks for the directed assembly of two-dimensional rotor arrays. J. Phys. Chem. C 113, 5895 (2009)CrossRefGoogle Scholar
  50. 50.
    Van Delden, R.A., ter Wiel, M.K.J., Pollard, M.M., Vicario, J., Koumura, N., Feringa, B.L.: Unidirectional molecular motor on a gold surface. Nature 437, 1337 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Henningsen, N., Franke, K.J., Torrente, I.F., Sehulze, G., Priewisch, B., Ruck-Braun, K., Dokic, J., Klamroth, T., Saalfrank, P., Pascual, J.I.: Inducing the rotation of a single phenyl ring with tunneling electrons. J. Phys. Chem. C 111, 14843 (2007)CrossRefGoogle Scholar
  52. 52.
    Merz, L., Guentherodt, H.J., Scherer, L.J., Constable, E.C., Housecroft, C.E., Neuburger, M., Hermann, B.A.: Octyl-Decorated Frechet-Type dendrons: A general motif for visualisation of static and dynamic behaviour using STM? Chem. Eur. J. 11, 2307–2318 (2005)CrossRefGoogle Scholar
  53. 53.
    Pollard, M.M., Lubomska, M., Rudolf, P., Feringa, B.L.: Controlled rotary motion in a monolayer of molecular motors. Angew. Chem. Int. Ed. 46, 1278 (2007)Google Scholar
  54. 54.
    Katsonis, N., Lubomska, M., Pollard, M.M., Feringa, B.L., Rudolf, P.: Synthetic light-activated molecular switches and motors on surfaces. Prog. Surf. Sci. 82, 407 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Alvey, M.D., Yates, J.T., Uram, K.J.: Electron-stimulated-desorption ion angular distributions of negative ions. J. Chem. Phys. 87, 7221 (1987)ADSCrossRefGoogle Scholar
  56. 56.
    Wintjes, N., Bonifazi, D., Cheng, F.Y., Kiebele, A., Stohr, M., Jung, T., Spillmann, H., Die-derich, F.A.: Supramolecular multiposition rotary device. Angew. Chem. Int. Ed. 46, 4089 (2007)Google Scholar
  57. 57.
    Baber, A.E., Tierney, H.L., Sykes, E.C.H.: Quantitative single-molecule study of thioether molecular rotors. ACS Nano 2, 2385 (2008)CrossRefGoogle Scholar
  58. 58.
    Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Helv. Phys. Acta. 55, 726 (1982)Google Scholar
  59. 59.
    Binnig, G., Rohrer, H.: Scanning tunneling microscopy—from birth to adolescence. Rev. Mod. Phys. 59, 615 (1987)ADSCrossRefGoogle Scholar
  60. 60.
    Gimzewski, J.K., Joachim, C.: Nanoscale science of single molecules using local probes. Science 283, 1683 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    Stroscio, J.A., Eigler, D.M.: Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319 (1991)ADSCrossRefGoogle Scholar
  62. 62.
    Avouris, P.: Manipulation of matter at the atomic and molecular-levels. Acc. Chem. Res. 28, 95 (1995)CrossRefGoogle Scholar
  63. 63.
    Rosei, F., Schunack, M., Naitoh, Y., Jiang, P., Gourdon, A., Laegsgaard, E., Stensgaard, I., Joachim, C., Besenbacher, F.: Properties of large organic molecules at surfaces. Prog. Surf. Sci. 71, 95 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    Mikkelsen, K.V., Ratner, M.A.: Synthesis and properties of viologen functionalized poly(3-alkylthienylenes). Chem. Rev. 87, 113 (1987)CrossRefGoogle Scholar
  65. 65.
    Kral, P.: Nonequilibrium linked cluster expansion for steady-state quantum transport. Phys. Rev. B 56, 7293 (1997)ADSCrossRefGoogle Scholar
  66. 66.
    Kaun, C.C., Seideman, T.: Current-driven oscillations and time-dependent transport in nanojunctions. Phys. Rev. Lett. 94, 226801 (2005)ADSCrossRefGoogle Scholar
  67. 67.
    Mendes, P.M., Flood, A.H., Stoddart, J.F.: Nanoelectronic devices from self-organized molecular switches. Appl. Phys. A 80, 1197 (2005)CrossRefGoogle Scholar
  68. 68.
    Jang, S.S., Jang, Y.H., Heath, J.R., et al.: Structures and properties of self-assembled monolayers of bistable Rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment. J. Am. Chem. Soc. 127, 1563 (2005)CrossRefGoogle Scholar
  69. 69.
    Flood, A.H., Peters, A.J., Vignon, S.A., Steuerman, D.W., Tseng, H.R., Kang, S., Heath, J.R., Stoddart, J.F.: The role of physical environment on molecular electromechanical switching. Chem. Eur. J. 10, 6558 (2004)CrossRefGoogle Scholar
  70. 70.
    Cavallini, M., Biscarini, F., León, S., Zerbetto, F., Bottari, G., Leigh, D.A.: Information storage using supramolecular surface patterns. Science 299, 531 (2003)CrossRefGoogle Scholar
  71. 71.
    Kim, Y.H., Jang, S.S., Jang, Y.H., Goddard, W.A., III.: First-principles study of the switching mechanism of [2]Catenane molecular electronic devices. Phys. Rev. Lett. 94, 156801 (2005)Google Scholar
  72. 72.
    Feng, M., Gao, L., Du, S.X., Deng, Z.T., Cheng, Z.H., Ji, W., Zhang, D.Q., Guo, X.F., Lin, X., Chi, L.F., Zhu, D.B., Fuchs, H., Gao, H.J.: Observation of structural and conductance transition of Rotaxane molecules at a submolecular scale. Adv. Funct. Mater 17, 770 (2007)Google Scholar
  73. 73.
    Frisch, M.J., Trucks, G.W., Pople, J.A. et al.: Gaussian 03, revision C.02. Gaussian Inc., Wallingford, CT (2004)Google Scholar
  74. 74.
    Allinger, N.L.: Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127 (1977)CrossRefGoogle Scholar
  75. 75.
    Feng, M., Guo, X.F., Lin, X., He, X.B., Ji, W., Du, S.X., Zhang, D.Q., Zhu, D.B., Gao, H.J.: Reproducible nanorecording on rotaxane thin films. J. Am. Chem. Soc. 127, 15338 (2005)CrossRefGoogle Scholar
  76. 76.
    Feng, M., Gao, L., Deng, Z.T., Ji, W., Du, S.X., Guo, X.F., Zhang, D.Q., Zhu, D.B., Gao, H.J.: Reversible, erasable, and rewritable nanorecording on an H2 Rotaxane thin film. J. Am. Chem. Soc. 129, 2204 (2007)CrossRefGoogle Scholar
  77. 77.
    Chiaravalloti, F., Gross, L., Rieder, K.H., Stojkovic, S.M., Gourdon, A., Joachim, C., Mo-resco, F.: A rack-and-pinion device at the molecular scale. Nat. Mater 6, 30 (2007)ADSCrossRefGoogle Scholar
  78. 78.
    Browne W.R., Feringa B.L: Making molecular machines work. Nat. Nanotechnol. 1, 25 (2006)Google Scholar
  79. 79.
    Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)CrossRefGoogle Scholar
  80. 80.
    Kottas, G.S., Clarke, L.I., Horinek, D., Michl, J.: Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005)CrossRefGoogle Scholar
  81. 81.
    Woell, C., Chiang, S., Wilson, R.J., Lippel, P.H.: Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B 39, 7988 (1989)ADSCrossRefGoogle Scholar
  82. 82.
    Barth, J.V., Brune, H., Ertl, G., Behm, R.J.: STM observations on the reconstructed Au(111) surface—atomic-structure, long-range superstructure, rotational domains, and surface-defects. Phys. Rev. B 42, 9307 (1990)ADSCrossRefGoogle Scholar
  83. 83.
    Maksymovych, P., Sorescu, D.C., Yates, J.T., Jr.: Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface. Phys. Rev. Lett. 97, 146103 (2006)Google Scholar
  84. 84.
    Peter, M., Dan, C.S., John Yates, T., Jr.: Phys. Rev. Lett. 97, 146103 (2006)Google Scholar
  85. 85.
    Limot, L., Kröger, J., Berndt, R., Garcia-Lekue, A., Hofer, W.A.: Atom transfer and single-adatom contacts. Phys. Rev. Lett. 94, 126102 (2005)ADSCrossRefGoogle Scholar
  86. 86.
    Perry, C.C., Haq, S., Frederick, B.G., Richardson, N.V.: Face specificity and the role of metal adatoms in molecular reorientation at surfaces. Surf. Sci. 409, 512 (1998)ADSCrossRefGoogle Scholar
  87. 87.
    Röder, H., Hahn, E., Brune, H., Bucher, J.P., Kern, K.: Building one-dimensional and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature 366, 141 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Haiming Guo
    • 1
  • Yeliang Wang
    • 1
  • Min Feng
    • 1
  • Li Gao
    • 1
  • Hongjun Gao
    • 1
  1. 1.Nanoscale Physics and Devices LaboratoryInstitute of Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations