Skip to main content

Probing Single Molecular Motors on Solid Surface

  • Conference paper
  • First Online:
Atomic Scale Interconnection Machines

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1003 Accesses

Abstract

Understanding structures and mechanisms of single molecular motors on solid surfaces is of critical importance for nanoscale engineering and bottom-up construction of complex devices at single molecular scale. In this chapter, two different kinds of single molecular motors at surfaces are studied with scanning tunneling microscopy (STM) technique. We discuss the structural and conductance transitions of one H2 rotaxane molecule at the sub-rotaxane scale, and then present a molecular rotor with a fixed off-center axis formed by chemical bonding on Au(111) substrate. These results represent important advances in single molecular-based machines and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eigler, D.M., Lutz, C.P., Rudge, W.E.: An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600 (1991)

    Article  ADS  Google Scholar 

  2. Barth, J.V., Costantini, G., Kern, K.: Engineering atomic and molecular nanostructures on surfaces. Nature 437, 671 (2005)

    Article  ADS  Google Scholar 

  3. Gao, H.J., Gao, L.: Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-assembly, and applications. Prog. Surf. Sci. 85, 28 (2010)

    Article  ADS  Google Scholar 

  4. Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721 (1993)

    Article  ADS  Google Scholar 

  5. Schliwa, M., Woehlke, G.: Molecular motors. Nature 422, 759 (2003)

    Article  ADS  Google Scholar 

  6. Schnitzer, M.J., Block, S.M.: Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386 (1997)

    Article  ADS  Google Scholar 

  7. Atsumi, T., Mccarter, L., Imae, T.: Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355, 182 (1992)

    Article  ADS  Google Scholar 

  8. Park, H., Park, J., Lim, A.K.L., Anderson, E.H., Alivisatos, A.P., McEuen, P.L.: Nano-mechanical oscillations in a single-C60 transistor. Nature. 407, 57 (2000)

    Google Scholar 

  9. Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541 (2000)

    Article  ADS  Google Scholar 

  10. Stipe, B.C., Rezaei, M.A., Ho, W.: Inducing and viewing the rotational motion of a single molecule. Science 279, 1907 (1998)

    Article  ADS  Google Scholar 

  11. Zheng, X.L., Mulcahy, M.E., Horinek, D., Galeotti, F., Magnera, T.F., Michl, J.: Dipolar and nonpolar altitudinal molecular rotors mounted on an Au(111) surface. J. Am. Chem. Soc. 126, 4540 (2004)

    Article  Google Scholar 

  12. Schliwa, M.: Molecular Motors. Wiley-VCH, Weinheim, Germany (2003)

    Google Scholar 

  13. Clayden, J., Pink, J.H.: Concerted rotation in a tertiary aromatic amide: Towards a simple molecular gear. Chem. Int. Ed. 37, 1937 (1998)

    Article  Google Scholar 

  14. Huck, N.P.M., Jager, W.F., de Lange, B., Feringa, B.L.: Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686 (1996)

    Article  ADS  Google Scholar 

  15. Bissell, R.A., C′ordova, E., Kaifer, A.E., Stoddart, J.F.: A chemically and electrochemically switchable molecular shuttle. Nature 369, 133 (1994)

    Article  ADS  Google Scholar 

  16. Ashton, P.R., Ballardini, R., Balzani, V., Baxter, I., Credi, A., Fyfe, M.C.T., Gandolfi, M.T., Lpez, M.G., Daz, M.V.M., Piersanti, A., Spencer, N., Stoddart, J.F., Venturi, M., White, A.J.P., Williams, D.J.: Acid−Base controllable molecular shuttles. J. Am. Chem. Soc. 120, 11932 (1998)

    Article  Google Scholar 

  17. Bedard, T.C., Moore, J.S.: Design and synthesis of molecular turnstiles. J. Am. Chem. Soc. 117, 10662 (1995)

    Article  Google Scholar 

  18. Kelly, T.R., Tellitu, I., Sestelo, J.P.: In search of molecular ratchets. Angew. Chem. Int. Ed. Engl. 36, 1866 (1997)

    Article  Google Scholar 

  19. Grill, L., Rieder, K.H., Moresco, F., Rapenne, G., Stojkovic, S., Bouju, X., Joachim, C.: Rolling a single molecular wheel at the atomic scale. Nat. Nanotechnol. 2, 95 (2007)

    Article  ADS  Google Scholar 

  20. Joachim, C., Tang, H., Moresco, F., Rapenne, G., Meyer, G.: The design of a nanoscale molecular barrow. Nanotechnology 13, 330 (2002)

    Article  ADS  Google Scholar 

  21. Jimenez, B.G., Rapenne, G.: Technomimetic molecules: synthesis of a molecular wheel-barrow. Tetrahedron Lett. 44, 6261 (2003)

    Google Scholar 

  22. Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in thermally driven single-molecule nanocars. Nano Lett. 5, 2330 (2005)

    Article  ADS  Google Scholar 

  23. Badjic, J.D., Balzani, V., Credi, A., Silvi, S., Stoddart, J.F.: A molecular elevator. Science 303, 1845 (2004)

    Article  ADS  Google Scholar 

  24. Van Den Broeck, C., Kawai, R.: Brownian refrigerator. Phys. Rev. Lett. 96, 210601 (2006)

    Article  MathSciNet  Google Scholar 

  25. Juluri, B.K., Kumar, A.S., Liu, Y., Ye, T., Yang, Y.-W., Flood, A.H., Fang, L., Stoddart, J.F., Weiss, P.S., Huang, T.J.: A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3, 291–300 (2009)

    Article  Google Scholar 

  26. Ye, T., Kumar, A.S., Saha, S., Takami, T., Huang, T.J., Stoddart, J.F., Weiss, P.S.: Changing stations in single bistable rotaxane molecules under electrochemical control. ACS Nano 4, 3697–3701 (2010)

    Article  Google Scholar 

  27. Brouwer, A.M., Frochot, C., Gatti, F.G., Leigh, D.A., Mottier, L.C., Paolucci, F., Roffia, S., Wurpel, G.W.H.: Photoinduction of fast, reversible translational motion in ahydro-gen-bonded molecular shuttle. Science 291, 2124 (2001)

    Article  ADS  Google Scholar 

  28. Serreli, V., Lee, C.-F., Kay, E.R., Leigh, D.A.: A molecular information ratchet. Nature 445, 523 (2007)

    Article  ADS  Google Scholar 

  29. Berna, J., Leigh, D.A., Lubomska, M., Mendoza, S.M., Perez, E.M., Rudolf, P., Teobaldi, G., Zerbetto, F.: Macroscopic transport by synthetic molecular machines. Nat. Mater 4, 704 (2005)

    Google Scholar 

  30. Anelli, P.L., Spencer, N., Stoddart, J.F.: A molecular shuttle. J. Am. Chem. Soc. 113, 5131 (1991)

    Article  Google Scholar 

  31. Nguyen, T.D., Leung, K.C.F., Liong, M., Pentecost, C.D., Stoddart, J.F., Zink, J.I.: Construction of a pH-driven supramolecular nanovalve. Org. Lett. 8, 3363 (2006)

    Article  Google Scholar 

  32. Collier, C.P., Mattersteig, G., Wong, E.W., Luo, Y., Beverly, K., Sampaio, J., Raymo, F.M., Stoddart, J.F., Heath, J.R.: A [2]Catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000)

    Article  ADS  Google Scholar 

  33. Collier, C.P., Jeppesen, J.O., Luo, Y., Perkins, J., Wong, E.W., Heath, J.R., Stoddart, J.F.: Molecular-based electronically switchable tunnel junction devices. J. Am. Chem. Soc. 123, 12632 (2001)

    Article  Google Scholar 

  34. Jang, Y.H., Hwang, S., Kim, Y.H., Jang, S.S., Goddart, W.A.: Density functional theory studies of the Rotaxane component of the Stoddart−Heath molecular switch. J. Am. Chem. Soc. 126, 12636 (2004)

    Article  Google Scholar 

  35. Deng, W.Q., Muller, R.P., Goddard, W.A., III.: Mechanism of the Stoddart−Heath bistable Rotaxane molecular switch. J. Am. Chem. Soc. 126, 13562 (2004)

    Google Scholar 

  36. Rapenne, G.: Synthesis of technomimetic molecules: Towards rotation control in single-molecular machines and motors. Org. Biomol. Chem. 3, 1165–1169 (2005)

    Article  Google Scholar 

  37. Vacek, J., Michl, J.: Artificial surface-mounted molecular rotors: Molecular dynamics simulations. Adv. Funct. Mater. 17, 730 (2007)

    Article  Google Scholar 

  38. Gao, L., Liu, Q., Zhang, Y.Y., Jiang, N., Zhang, H.G., Cheng, Z.H., Qiu, W.F., Du, S.X., Liu, Y.Q., Hofer, W.A., Gao, H.J.: Constructing an array of anchored single-molecule rotors on gold surfaces. Phy. Rev. Lett. 101, 197209 (2008)

    Article  ADS  Google Scholar 

  39. Zhong, D., Blomker, T., Wedeking, K., Chi, L., Erker, G., Fuchs, H.: Surface-mounted molecular rotors with variable functional groups and rotation radii. Nano Lett. 9, 4387 (2009)

    Article  ADS  Google Scholar 

  40. Vacek, J., Michl, J.: Molecular dynamics of a grid-mounted molecular dipolar rotor in a rotating electric field. Proc. Natl. Acad. Sci. USA 98, 5481 (2001)

    Article  ADS  Google Scholar 

  41. Tan, S., Lopez, H.A., Cai, C.W., Zhang, Y.: Optical trapping of single-walled carbon nanotubes. Nano Lett. 4, 1415 (2004)

    Article  ADS  Google Scholar 

  42. Berna, J., Leigh, D.A., Lubomska, M., Mendoza, S.M., Perez, E.M., Rudolf, P., Teobaldi, G., Zerbetto, F.: Macroscopic transport by synthetic molecular machines. Nat. Mater 4, 704 (2005)

    Article  ADS  Google Scholar 

  43. Petr, K., Tamar, S.: Current-induced rotation of helical molecular wires. J. Chem. Phys. 123, 184702 (2005)

    Article  Google Scholar 

  44. Green, J.E., Wook Choi, J., Boukai, A., Heath, J.R.A., et al.: 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter. Nature 445, 414 (2007)

    Article  ADS  Google Scholar 

  45. Kelly, T.R., De Silva, H., Silva, R.A.: Unidirectional rotary motion in a molecular system. Nature 401, 150 (1999)

    Article  ADS  Google Scholar 

  46. Astumian, R.D.: Thermodynamics and kinetics of a brownian motor. Science 276, 917 (1997)

    Article  Google Scholar 

  47. Davis A.P.: Molecular machines: Knowledge is power! Nat. Nanotechnol. 2, 135 (2007)

    Google Scholar 

  48. Gimzewski, J.K., Joachim, C., Schlittler, R.R., Langlais, V., Tang, H., Johannsen, I.: Rotation of a single molecule within a supramolecular bearing. Science 281, 531 (1998)

    Article  ADS  Google Scholar 

  49. Bellisario, D.O., Baber, A.E., Tierney, H.L., Sykes, E.C.H.: Engineering dislocation networks for the directed assembly of two-dimensional rotor arrays. J. Phys. Chem. C 113, 5895 (2009)

    Article  Google Scholar 

  50. Van Delden, R.A., ter Wiel, M.K.J., Pollard, M.M., Vicario, J., Koumura, N., Feringa, B.L.: Unidirectional molecular motor on a gold surface. Nature 437, 1337 (2005)

    Article  ADS  Google Scholar 

  51. Henningsen, N., Franke, K.J., Torrente, I.F., Sehulze, G., Priewisch, B., Ruck-Braun, K., Dokic, J., Klamroth, T., Saalfrank, P., Pascual, J.I.: Inducing the rotation of a single phenyl ring with tunneling electrons. J. Phys. Chem. C 111, 14843 (2007)

    Article  Google Scholar 

  52. Merz, L., Guentherodt, H.J., Scherer, L.J., Constable, E.C., Housecroft, C.E., Neuburger, M., Hermann, B.A.: Octyl-Decorated Frechet-Type dendrons: A general motif for visualisation of static and dynamic behaviour using STM? Chem. Eur. J. 11, 2307–2318 (2005)

    Article  Google Scholar 

  53. Pollard, M.M., Lubomska, M., Rudolf, P., Feringa, B.L.: Controlled rotary motion in a monolayer of molecular motors. Angew. Chem. Int. Ed. 46, 1278 (2007)

    Google Scholar 

  54. Katsonis, N., Lubomska, M., Pollard, M.M., Feringa, B.L., Rudolf, P.: Synthetic light-activated molecular switches and motors on surfaces. Prog. Surf. Sci. 82, 407 (2007)

    Article  ADS  Google Scholar 

  55. Alvey, M.D., Yates, J.T., Uram, K.J.: Electron-stimulated-desorption ion angular distributions of negative ions. J. Chem. Phys. 87, 7221 (1987)

    Article  ADS  Google Scholar 

  56. Wintjes, N., Bonifazi, D., Cheng, F.Y., Kiebele, A., Stohr, M., Jung, T., Spillmann, H., Die-derich, F.A.: Supramolecular multiposition rotary device. Angew. Chem. Int. Ed. 46, 4089 (2007)

    Google Scholar 

  57. Baber, A.E., Tierney, H.L., Sykes, E.C.H.: Quantitative single-molecule study of thioether molecular rotors. ACS Nano 2, 2385 (2008)

    Article  Google Scholar 

  58. Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Helv. Phys. Acta. 55, 726 (1982)

    Google Scholar 

  59. Binnig, G., Rohrer, H.: Scanning tunneling microscopy—from birth to adolescence. Rev. Mod. Phys. 59, 615 (1987)

    Article  ADS  Google Scholar 

  60. Gimzewski, J.K., Joachim, C.: Nanoscale science of single molecules using local probes. Science 283, 1683 (1999)

    Article  ADS  Google Scholar 

  61. Stroscio, J.A., Eigler, D.M.: Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319 (1991)

    Article  ADS  Google Scholar 

  62. Avouris, P.: Manipulation of matter at the atomic and molecular-levels. Acc. Chem. Res. 28, 95 (1995)

    Article  Google Scholar 

  63. Rosei, F., Schunack, M., Naitoh, Y., Jiang, P., Gourdon, A., Laegsgaard, E., Stensgaard, I., Joachim, C., Besenbacher, F.: Properties of large organic molecules at surfaces. Prog. Surf. Sci. 71, 95 (2003)

    Article  ADS  Google Scholar 

  64. Mikkelsen, K.V., Ratner, M.A.: Synthesis and properties of viologen functionalized poly(3-alkylthienylenes). Chem. Rev. 87, 113 (1987)

    Article  Google Scholar 

  65. Kral, P.: Nonequilibrium linked cluster expansion for steady-state quantum transport. Phys. Rev. B 56, 7293 (1997)

    Article  ADS  Google Scholar 

  66. Kaun, C.C., Seideman, T.: Current-driven oscillations and time-dependent transport in nanojunctions. Phys. Rev. Lett. 94, 226801 (2005)

    Article  ADS  Google Scholar 

  67. Mendes, P.M., Flood, A.H., Stoddart, J.F.: Nanoelectronic devices from self-organized molecular switches. Appl. Phys. A 80, 1197 (2005)

    Article  Google Scholar 

  68. Jang, S.S., Jang, Y.H., Heath, J.R., et al.: Structures and properties of self-assembled monolayers of bistable Rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment. J. Am. Chem. Soc. 127, 1563 (2005)

    Article  Google Scholar 

  69. Flood, A.H., Peters, A.J., Vignon, S.A., Steuerman, D.W., Tseng, H.R., Kang, S., Heath, J.R., Stoddart, J.F.: The role of physical environment on molecular electromechanical switching. Chem. Eur. J. 10, 6558 (2004)

    Article  Google Scholar 

  70. Cavallini, M., Biscarini, F., León, S., Zerbetto, F., Bottari, G., Leigh, D.A.: Information storage using supramolecular surface patterns. Science 299, 531 (2003)

    Article  Google Scholar 

  71. Kim, Y.H., Jang, S.S., Jang, Y.H., Goddard, W.A., III.: First-principles study of the switching mechanism of [2]Catenane molecular electronic devices. Phys. Rev. Lett. 94, 156801 (2005)

    Google Scholar 

  72. Feng, M., Gao, L., Du, S.X., Deng, Z.T., Cheng, Z.H., Ji, W., Zhang, D.Q., Guo, X.F., Lin, X., Chi, L.F., Zhu, D.B., Fuchs, H., Gao, H.J.: Observation of structural and conductance transition of Rotaxane molecules at a submolecular scale. Adv. Funct. Mater 17, 770 (2007)

    Google Scholar 

  73. Frisch, M.J., Trucks, G.W., Pople, J.A. et al.: Gaussian 03, revision C.02. Gaussian Inc., Wallingford, CT (2004)

    Google Scholar 

  74. Allinger, N.L.: Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127 (1977)

    Article  Google Scholar 

  75. Feng, M., Guo, X.F., Lin, X., He, X.B., Ji, W., Du, S.X., Zhang, D.Q., Zhu, D.B., Gao, H.J.: Reproducible nanorecording on rotaxane thin films. J. Am. Chem. Soc. 127, 15338 (2005)

    Article  Google Scholar 

  76. Feng, M., Gao, L., Deng, Z.T., Ji, W., Du, S.X., Guo, X.F., Zhang, D.Q., Zhu, D.B., Gao, H.J.: Reversible, erasable, and rewritable nanorecording on an H2 Rotaxane thin film. J. Am. Chem. Soc. 129, 2204 (2007)

    Article  Google Scholar 

  77. Chiaravalloti, F., Gross, L., Rieder, K.H., Stojkovic, S.M., Gourdon, A., Joachim, C., Mo-resco, F.: A rack-and-pinion device at the molecular scale. Nat. Mater 6, 30 (2007)

    Article  ADS  Google Scholar 

  78. Browne W.R., Feringa B.L: Making molecular machines work. Nat. Nanotechnol. 1, 25 (2006)

    Google Scholar 

  79. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)

    Article  Google Scholar 

  80. Kottas, G.S., Clarke, L.I., Horinek, D., Michl, J.: Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005)

    Article  Google Scholar 

  81. Woell, C., Chiang, S., Wilson, R.J., Lippel, P.H.: Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B 39, 7988 (1989)

    Article  ADS  Google Scholar 

  82. Barth, J.V., Brune, H., Ertl, G., Behm, R.J.: STM observations on the reconstructed Au(111) surface—atomic-structure, long-range superstructure, rotational domains, and surface-defects. Phys. Rev. B 42, 9307 (1990)

    Article  ADS  Google Scholar 

  83. Maksymovych, P., Sorescu, D.C., Yates, J.T., Jr.: Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface. Phys. Rev. Lett. 97, 146103 (2006)

    Google Scholar 

  84. Peter, M., Dan, C.S., John Yates, T., Jr.: Phys. Rev. Lett. 97, 146103 (2006)

    Google Scholar 

  85. Limot, L., Kröger, J., Berndt, R., Garcia-Lekue, A., Hofer, W.A.: Atom transfer and single-adatom contacts. Phys. Rev. Lett. 94, 126102 (2005)

    Article  ADS  Google Scholar 

  86. Perry, C.C., Haq, S., Frederick, B.G., Richardson, N.V.: Face specificity and the role of metal adatoms in molecular reorientation at surfaces. Surf. Sci. 409, 512 (1998)

    Article  ADS  Google Scholar 

  87. Röder, H., Hahn, E., Brune, H., Bucher, J.P., Kern, K.: Building one-dimensional and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature 366, 141 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for S. X. Du, D. X. Shi, Q. Liu, H. G. Zhang,X. Lin, Z. H. Cheng, Z. T. Deng, N. Jiang, W. Ji, J. T. Sun, Y. Y. Zhang for invaluable assistance in experiments and theoretical simulations. This research is supported by Chinese Academy of Sciences, the Natural Science Foundation of China (NSFC) and the Chinese National “863” and “973” projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, H., Wang, Y., Feng, M., Gao, L., Gao, H. (2012). Probing Single Molecular Motors on Solid Surface. In: Joachim, C. (eds) Atomic Scale Interconnection Machines. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28172-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28172-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28171-6

  • Online ISBN: 978-3-642-28172-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics