Solid State Nano Gears Manipulations

  • Cedric TroadecEmail author
  • Jie Deng
  • Francisco Ample
  • Ramesh Thamankar
  • Christian Joachim
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


The detailed fabrication and manipulations of solid state nano gears up to 350 nm in diameter is reported. Atomic force microscopy (AFM) and ultra high vacuum (UHV) scanning tunneling microscopy (STM) are used to maneuver the gears. The aim is to bridge the gap between the current solid state gears and the now available nanoscale gears. As in many technology integrations, miniaturization is a way to boost efficiency and an opening to new applications.


Atomic Force Microscopy Scanning Tunneling Microscopy Ultra High Vacuum Single Gold Crystal Thick Gold Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Agency for Science, Technology and Research (A*STAR) funding under project no. 1021100972.


  1. 1.
    Darle, W.D.: The evolution of the gear art. American Gear Manufacturers Association, Washington (1969)Google Scholar
  2. 2.
    Rogers, M.S., Sniegowski, S.S., Miller, S., LaVigne, G.F.: Designing and operating electrostatically driven microengines. In: Proceedings of the 44th International Instrumentation Symposium, Reno, NV, May 3–7, pp. 56–65 (1998)Google Scholar
  3. 3.
    Yun, Y.J., Ah, C.S., Kim, S., Yun, W.S., Park, B.C., Ha, D.H.: Manipulation of freestanding Au nanogears using an atomic force microscope. Nanotechnology 18, 505304 (2007). doi: 10.1088/0957-4484/18/50/505304 CrossRefGoogle Scholar
  4. 4.
    Manzano, C., Soe, W.-H., Wong, H.S., Ample, F., Gourdon, A., Chandrasekhar, N., Joachim, C.: Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nat. Mater. 8, 576 (2009). doi: 10.1038/nmat2467 ADSCrossRefGoogle Scholar
  5. 5.
    Deng, J., Troadec, C., Ample, F., Joachim, C.: Fabrication and manipulation of solid-state SiO2 nano-gears on a gold surface. Nanotechnology 22, 275307 (2011). doi: 10.1088/0957-4484/22/27/275307 ADSCrossRefGoogle Scholar
  6. 6.
    Häffner, M., Haug, A., Heeren, A., Fleischer, M., Peisert, H., Chassé, T., Kern, D.P.: Influence of temperature on HSQ electron-beam lithography. J. Vac. Sci. Technol. B 25, 2045 (2007). doi: 10.1116/1.2794324 CrossRefGoogle Scholar
  7. 7.
    Neucheva, O.A., Thamankar, R., Yap, T.L., Troadec, C., Deng, J., Joachim, C.: Atomic scale interconnection machine. In: Joachim, C. (ed.) Advances in Atom and Single Molecule Machines, Springer, Berlin (2012)Google Scholar
  8. 8.
    Thamankar, R., Neucheva O.A., Yap, T.L., Joachim, C.: Surface conductivity measurements on MoS2 using UHV-NANOPROBE. In: Joachim, C. (ed.) Advances in Atom and Single Molecule Machines, Springer, Berlin (2012)Google Scholar
  9. 9.
    Joachim, C., Martrou, D., Rezeq, M., Troadec, C., Deng, J., Chandrasekhar, N., Gauthier, S.: Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J. Phys. Condens. Matter 22, 084025 (2010) doi:  10.1088/0953-8984/22/8/084025

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cedric Troadec
    • 1
    Email author
  • Jie Deng
    • 1
  • Francisco Ample
    • 1
  • Ramesh Thamankar
    • 1
  • Christian Joachim
    • 1
    • 2
  1. 1.Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research)SingaporeSingapore
  2. 2.Nanoscience Group and MANA Satellite, CEMES/CNRSToulouseFrance

Personalised recommendations