Advertisement

Electronic Transport on the Nanoscale

  • C. A. Bobisch
  • A. M. Bernhart
  • M. R. Kaspers
  • M. C. Cottin
  • J. Schaffert
  • R. MöllerEmail author
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

A scanning tunneling microscope with several tips is ideally suited to analyze the electronic transport through objects on the nanoscale. Two different configurations will be discussed. The lateral transport of electrons may be studied by using two tips to drive a current parallel to the surface. A third tip enables to map the corresponding electrochemical potential μ ec. Measurements for a 2D conducting layer will be discussed. To analyze the transport perpendicular to the surface, a thin metallic layer is placed on a semiconducting surface. At the interface a Schottky barrier is formed, which can only be overcome by electrons of sufficient energy. This may be used to split the tunneling current coming from the tip of the microscope, into the ballistic electrons and the electrons which underwent inelastic scattering processes. This technique has been applied to study the ballistic transport of electrons through a thin epitaxial Bi(111) layer as well as through individual molecules.

Keywords

Lower Unoccupied Molecular Orbital Schottky Barrier Metal Film Tunneling Current Mean Free Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work has been supported by the Deutsche Forschungsgemeinschaft (DFG) through the Sonderforschungsbereich 616 “Energy Dissipation at Surfaces”. Additional support to M.C.C. is granted by the Studienstiftung des deutschen Volkes. D. Utzat is gratefully acknowledged for designing and constructing the STM electronics. We gratefully acknowledge M. Wenderoth for stimulating discussions and providing the simulations for the Ohmic network.

References

  1. 1.
    Muralt, P., Pohl, D.W.: Scanning tunneling potentiometry. Appl. Phys. Lett. 48(8), 514 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    Binnig, G., Rohrer, H., Gerber, Ch., Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    Baddorf, A.P.: Scanning tunneling potentiometry: the power of STM applied to electrical transport. In: Kalinin, S.V., Gruverman, A. (eds.) Scanning Probe Microscopy, pp. 11–30. Springer, New York (2007)Google Scholar
  5. 5.
    Briner, B.G., Feenstra, R.M., Chin, T.P., Woodall, J.M.: Local transport properties of thin bismuth films studied by scanning tunneling potentiometry. Phys. Rev. B 54(8), R5283 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Bannani, A., Bobisch, C.A., Möller, R.: Local potentiometry using a multiprobe scanning tunneling microscope. Rev. Sci. Instrum. 79, 083704 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Homoth, J., Wenderoth, M., Druga, T., Winking, L., Ulbrich, R.G., Bobisch, C.A., Weyers, B., Bannani, A., Zubkov, E., Bernhart, A.M., Kaspers, M.R., Möller, R.: Electronic transport on the nanoscale: ballistic transmission and Ohm’s law. Nano Lett. 9, 1588 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Kaiser, W.J., Bell, L.D.: Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy. Phys. Rev. Lett. 60, 1406 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    Bell, L.D., Kaiser, W.J.: Observation of interface band structure by ballistic-electron-emission microscopy. Phys. Rev. Lett. 61, 2368 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    Schottky, W.: Experimental measurement of the total-energy distribution of field-emitted electrons. Zeits. f. Physik 113, 367 (1939)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Braun, F.: Über die Stromleitung durch Schwefelmetalle. Pogg. Ann. 153, 556 (1874)Google Scholar
  12. 12.
    Mönch, W.: Electronic Properties of Semiconductor Interfaces, 43rd edn. Springer, Berlin (2004)Google Scholar
  13. 13.
    Narayanamurti, V., Kozhevnikov, M.: BEEM imaging and spectroscopy of buried structures in semiconductors. Phys. Rep. 349, 447 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Prietsch, M.: Ballistic electron emission microscopy (BEEM): studies of metal/semiconductor interfaces with nanometer resolution. Phys. Rep. 253, 163 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Yi, W., Narayanamurti, V., Ku, K.-C., Zhu, M., Samarth, N.: Magnetoresistance in an asymmetric Ga1-xMnxAs resonant tunnelling diode. Phys. Rev. B 80, 201307(R) (2009)Google Scholar
  16. 16.
    Nienhaus, H., Weyers, S.J., Gergen, B., McFarland, E.W.: Thin Au/Ge Schottky diodes for detection of chemical reaction induced electron excitation. Sens. Actuators B Chem. 87, 421 (2002)CrossRefGoogle Scholar
  17. 17.
    Krix, D., Nünthel, R., Nienhaus, H.: Generation of hot charge carriers by adsorption of hydrogen and deuterium atoms on a silver surface. Phys. Rev. B 75, 073410 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Bobisch, C., Bannani, A., Matena, M., Möller, R.: Ultrathin Bi-films on Si(100). Nanotechnology 18, 055606 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Jnawali, G., Hattab, H., Krenzer, B., Horn-von Högen, M.: Lattice accommodation of epitaxial Bi(111) films on Si(001) studied with SPA-LEED and AFM. Phys. Rev. B 74, 195340 (2006)Google Scholar
  20. 20.
    Tolansky, S., Emara, S.H.: Precision multiple-beam interference fringes with high lateral microscopic resolution. J. Opt. Soc. Am. 45, 792 (1955)ADSCrossRefGoogle Scholar
  21. 21.
    Girardin, C., Coratger, R., Pechou, R., Ajustron, F., Beauvillain, J.: Study of the electron mean free path by ballistic electron emission microscopy. J. Phys. III France 6, 661 (1996)CrossRefGoogle Scholar
  22. 22.
    Seah, M.P., Dench, W.A.: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2 (1979)CrossRefGoogle Scholar
  23. 23.
    Hattab, H., Zubkov, E., Bernhart, A., Jnawali, G., Bobisch, C., Krenzer, B., Acet, M., Möller, R., Horn-von Hoegen, M.: Epitaxial Bi(111) films on Si(001): strain state, surface morphology, and defect structure. Thin Solid Films 516, 8227 (2008)Google Scholar
  24. 24.
    Smith, G.E., Baraff, G.A., Rowell, J.M.: Effective g factor of electrons and holes in bismuth. Phys. Rev. 135, A1118 (1964)ADSCrossRefGoogle Scholar
  25. 25.
    Bannani, A., Bobisch, C., Möller, R.: Ballistic electron microscopy of individual molecules. Science 315, 1824 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Palm, H., Arbes, M., Schulz, M.: Nanometer-microscopy of the electron transmission through an ultrathin (3–22 nm) Au film and of the Au-Si Schottky barrier height. Appl. Phys. A 56, 1 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Niedermann, P., Quattropani, L., Solt, K., Maggio-Aprile, I., Fischer, O.: Hot-carrier scattering in a metal: a ballistic-electron-emission microscopy investigation on PtSi. Phys. Rev. B 48, 8833 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    Feenstra, R.M., Stroscio, J.A., Tersoff, J., Fein, A.P.: Local state density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface. Phys. Rev. Lett. 58, 1668 (1987)ADSCrossRefGoogle Scholar
  29. 29.
    Hamers, R.J., Tromp, R.M., Demuth, J.E.: Surface electronic structure of Si(111)-(7x7) resolved in real space. Phys. Rev. Lett. 56, 18 (1986)CrossRefGoogle Scholar
  30. 30.
    Stipe, B.C., Rezaei, M.A., Ho, W.: Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    Sirringhaus, H., Lee, E.Y., von Känel, H.: Hot carrier scattering at interfacial dislocations observed by ballistic-electron-emission microscopy. Phys. Rev. Lett. 73, 577 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    Ast, C.R., Höchst, H.: Electronic structure of a bismuth bilayer. Phys. Rev. B 67, 113102 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Altmann, E.I., Colton, R.J.: Determination of the orientation of C60 adsorbed on Au(111) and Ag(111). Phys. Rev. B 48, 18244 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    Yamachika, R., Grobis, M., Wachowiak, A., Crommie, M.F.: Controlled atomic doping of a single C60 molecule. Science 304, 281 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Ono, T., Hirose, K.: First-principles study of electron-conduction properties of C60 bridges. Phys. Rev. Lett. 98, 026804 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Chizhov, I., Kahn, A., Scoles, G.: The influence of steps on the orientation of copper phthalocyanine monolayers on Au(111). J. Cryst. Growth 208, 449 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    Umbach, E., Sokolowski, M., Fink, R.: Substrate interaction, long-range order, and epitaxy of large organic adsorbates. Appl. Phys. A 63, 565 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    Temirov, R., Soubatch, S., Luican, A., Tautz, F.S.: Free-electron-like dispersion in an organic monolayer film on a metal substrate. Nature 444, 350 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. A. Bobisch
    • 1
  • A. M. Bernhart
    • 1
  • M. R. Kaspers
    • 1
  • M. C. Cottin
    • 1
  • J. Schaffert
    • 1
  • R. Möller
    • 1
    Email author
  1. 1.Faculty of Physics, Center for Nanointegration Duisburg-EssenUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations