Advertisement

Atomic-Scale Devices in Silicon by Scanning Tunneling Microscopy

  • J. A. Miwa
  • M. Y. Simmons
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

The ability to control matter at the atomic scale and build devices with atomic precision is one of the core challenges of nanotechnology. In this chapter, we outline a complete fabrication strategy for building atomic-scale devices in silicon with atomic precision in all three-dimensions. Using scanning tunneling microscopy (STM)-based lithography we have imaged and placed phosphorus dopant atoms in precise locations on a silicon surface before encapsulating them with silicon using low temperature molecular beam epitaxy to activate the dopants. Etched registration markers allow us to locate and align external electrical contacts to the buried STM-patterned dopant atoms so that we can perform electron transport measurements outside the microscope at cryogenic temperatures. Using this unique strategy we discuss the realization of conducting nanoscale wires, tunnel junctions and all epitaxial single electron transistors. Finally we provide an outlook to achieving truly single atom device architectures toward our ultimate goal of realizing a silicon-based quantum computer.

Keywords

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Epitaxial Silicon Energy Level Spacing Phosphorus Dopant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Project No. CE110001027) and the Army Research Office under contract number W911NF-08-1-0527. M. Y. S acknowledges a Federation Fellowship. J. A. M. thanks S. Mahapatra, G. Scappucci and M. Fuechsle for many useful discussions.

References

  1. 1.
    Koenraad, P.M., Flatte, M.E.: Single dopants in semiconductors. Nat. Mater. 10(2), 91–100 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Shinada, T., Okamoto, S., Kobayashi, T., Ohdomari, I.: Enhancing semiconductor device performance using ordered dopant arrays. Nature 437(7062), 1128–1131 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Lansbergen, G.P., Rahman, R., Wellard, C.J., Woo, I., Caro, J., Collaert, N., Biesemans, S., Klimeck, G., Hollenberg, L.C.L., Rogge, S.: Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat. Phys. 4(8), 656–661 (2008)CrossRefGoogle Scholar
  4. 4.
    Roy, S., Asenov, A.: Where do the dopants go? Science 309(5733), 388–390 (2005)Google Scholar
  5. 5.
    Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Feynman, R.P.: Feynman Lectures on Computation. Addison-Wesley, Reading (1996)Google Scholar
  7. 7.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (ed.) 35th Annual Symposium on Foundations of Computer Science, Proceedings IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  8. 8.
    Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68(3), 733–753 (1996)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  11. 11.
    Vrijen, R., Yablonovitch, E., Wang, K., Jiang, H.W., Balandin, A., Roychowdhury, V., Mor, T., DiVincenzo, D.: Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    de Sousa, R., Delgado, J.D., Das Sarma, S.: Silicon quantum computation based on magnetic dipolar coupling. Phys. Rev. A 70(5), 052304 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Hollenberg, L.C.L., Dzurak, A.S., Wellard, C., Hamilton, A.R., Reilly, D.J., Milburn, G.J., Clark, R.G.: Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69(11), 4 (2004)CrossRefGoogle Scholar
  14. 14.
    Tyryshkin, A.M., Lyon, S.A., Astashkin, A.V., Raitsimring, A.M.: Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68(19), 193207 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Morton, J.J.L., Tyryshkin, A.M., Brown, R.M., Shankar, S., Lovett, B.W., Ardavan, A., Schenkel, T., Haller, E.E., Ager, J.W., Lyon, S.A.: Solid-state quantum memory using the 31P nuclear spin. Nature 455(7216), 1085–1088 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Morton, J.J.L., Lovett, B.W.: Hybrid solid-state qubits: the powerful role of electron spins. In: Langer, J.S. (ed.) Annual Review of Condensed Matter Physics, vol. 2, pp. 189–212. Annual Reviews, Palo Alto (2011)Google Scholar
  17. 17.
    Kohn, W.: Shallow impurity states in silicon and germanium. Solid State Phys. Adv. Res. Appl. 5, 257–320 (1957)Google Scholar
  18. 18.
    Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120–126 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Helv. Phys. Acta 55(6), 726–735 (1982)Google Scholar
  20. 20.
    Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57–61 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanning tunnelling microscope. Nature 344(6266), 524–526 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    Crommie, M.F., Lutz, C.P., Eigler, D.M.: Confinement of electrons to quantum corrals on a metal surface. Science 262(5131), 218–220 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Hla, S.W.: Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 23(4), 1351–1360 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Moresco, F.: Manipulation of large molecules by low-temperature STM: model systems for molecular electronics. Phys. Rep. 399(4), 175–225 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Otero, R., Rosei, F., Besenbacher, F.: Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. In: Annual Review of Physical Chemistry, vol. 57. pp. 497–525. Annual Reviews, Palo Alto (2006)Google Scholar
  26. 26.
    Lyo, I.W., Avouris, P.: Atomic scale desorption processes induced by the scanning tunneling microscope. J. Chem. Phys. 93(6), 4479–4480 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    Lyding, J.W., Shen, T.C., Hubacek, J.S., Tucker, J.R., Abeln, G.C.: Nanoscale patterning and oxidation of H-passivated Si(100)-2 × 1 surfaces with an ultrahigh-vacuum scanning tunneling microscope. Appl. Phys. Lett. 64(15), 2010–2012 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Hersam, M.C., Guisinger, N.P., Lyding, J.W.: Silicon-based molecular nanotechnology. Nanotechnology 11(2), 70–76 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    Lopinski, G.P., Wayner, D.D.M., Wolkow, R.A.: Self-directed growth of molecular nanostructures on silicon. Nature 406(6791), 48–51 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Pitters, J.L., Piva, P.G., Tong, X., Wolkow, R.A.: Reversible passivation of silicon dangling bonds with the stable radical TEMPO. Nano Lett. 3(10), 1431–1435 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Miwa, J.A., Eves, B.J., Rosei, F., Lopinski, G.P.: Selective adsorption of pyridine at isolated reactive sites on Si(100). J. Phys. Chem. B 109(43), 20055–20059 (2005)CrossRefGoogle Scholar
  32. 32.
    Tucker, J.R., Shen, T.C.: Prospects for atomically ordered device structures based on STM lithography. Solid-State Electron. 42(7–8), 1061–1067 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    Wada, Y.: Atom electronics: a proposal of atom/molecule switching devices. Surf. Sci. 386, 13 (1997)CrossRefGoogle Scholar
  34. 34.
    Goh, K.E.J., Oberbeck, L., Simmons, M.Y., Hamilton, A.R., Clark, R.G.: Effect of encapsulation temperature on Si:P delta-doped layers. Appl. Phys. Lett. 85(21), 4953–4955 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Oberbeck, L., Hallam, T., Curson, N.J., Simmons, M.Y., Clark, R.G.: STM investigation of epitaxial Si growth for the fabrication of a Si-based quantum computer. Appl. Surf. Sci. 212, 319–324 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Fuechsle, M., Ruess, F.J., Reusch, T.C.G., Mitic, M., Simmons, M.Y.: Surface gate and contact alignment for buried, atomically precise scanning tunneling microscopy-patterned devices. J. Vac. Sci. Technol. B 25, 2562 (2007)CrossRefGoogle Scholar
  37. 37.
    Ruess, F.J., Oberbeck, L., Goh, K.E.J., Butcher, M.J., Gauja, E., Hamilton, A.R., Simmons, M.Y.: The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures. Nanotechnology 16(10), 2446–2449 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Schofield, S.R., Curson, N.J., Simmons, M.Y., Ruess, F.J., Hallam, T., Oberbeck, L., Clark, R.G.: Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91(13) (2003)Google Scholar
  39. 39.
    Ruess, F.J., Oberbeck, L., Simmons, M.Y., Goh, K.E.J., Hamilton, A.R., Hallam, T., Schofield, S.R., Curson, N.J., Clark, R.G.: Toward atomic-scale device fabrication in silicon using scanning probe microscopy. Nano Lett. 4(10), 1969–1973 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    O’Brien, J.L., Schofield, S.R., Simmons, M.Y., Clark, R.G., Dzurak, A.S., Curson, N.J., Kane, B.E., McAlpine, N.S., Hawley, M.E., Brown, G.W.: Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64(16), 161401(R) (2001)Google Scholar
  41. 41.
    Ruess, F.J., Pok, W., Reusch, T.C.G., Butcher, M.J., Goh, K.E.J., Oberbeck, L., Scappucci, G., Hamilton, A.R., Simmons, M.Y.: Realization of atomically controlled dopant devices in silicon. Small 3(4), 563–567 (2007)CrossRefGoogle Scholar
  42. 42.
    Wilson, H.F., Warschkow, O., Marks, N.A., Schofield, S.R., Curson, N.J., Smith, P.V., Radny, M.W., McKenzie, D.R., Simmons, M.Y.: Phosphine dissociation on the Si(001) surface. Phys. Rev. Lett. 93(22), 4 (2004)CrossRefGoogle Scholar
  43. 43.
    Wilson, H.F., Warschkow, O., Marks, N.A., Curson, N.J., Schofield, S.R., Reusch, T.C.G., Radny, M.W., Smith, P.V., McKenzie, D.R., Simmons, M.Y.: Thermal dissociation and desorption of PH3 on Si(001): a reinterpretation of spectroscopic data. Phys. Rev. B 74(19), 195310 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    Oberbeck, L., Curson, N.J., Hallam, T., Simmons, M.Y., Bilger, G., Clark, R.G.: Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy. Appl. Phys. Lett. 85(8), 1359–1361 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    Oberbeck, L., Curson, N.J., Simmons, M.Y., Brenner, R., Hamilton, A.R., Schofield, S.R., Clark, R.G.: Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer. Appl. Phys. Lett. 81(17), 3197–3199 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    McKibbin, S.R., Clarke, W.R., Fuhrer, A., Reusch, T.C.G., Simmons, M.Y.: Investigating the regrowth surface of Si:P delta-layers toward vertically stacked three dimensional devices. Appl. Phys. Lett. 95(23), 233111 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Boland, J.J.: Evidence of pairing and its role in the recombinative desorption of hydrogen from the Si(100)-2x1 surface. Phys. Rev. Lett. 67(12), 1539–1542 (1991)ADSCrossRefGoogle Scholar
  48. 48.
    Warschkow, O., Wilson, H.F., Marks, N.A., Schofield, S.R., Curson, N.J., Smith, P.V., Radny, M.W., McKenzie, D.R., Simmons, M.Y.: Phosphine adsorption and dissociation on the Si(001) surface: an ab initio survey of structures. Phys. Rev. B 72(12), 125328 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    Schofield, S.R., Curson, N.J., Warschkow, O., Marks, N.A., Wilson, H.F., Simmons, M.Y., Smith, P.V., Radny, M.W., McKenzie, D.R., Clark, R.G.: Phosphine dissociation and diffusion on Si(001) observed at the atomic scale. J. Phys. Chem. B 110(7), 3173–3179 (2006)CrossRefGoogle Scholar
  50. 50.
    Fuechsle, M., Mahapatra, S., Zwanenburg, F.A., Friesen, M., Eriksson, M.A., Simmons, M.Y.: Spectroscopy of few-electron single-crystal silicon quantum dots. Nat. Nanotechnol. 5(7), 502–505 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    Ruess, F.J., Goh, K.E.J., Butcher, M.J., Reusch, T.C.G., Oberbeck, L., Weber, B., Hamilton, A.R., Simmons, M.Y.: Narrow, highly P-doped, planar wires in silicon created by scanning probe microscopy. Nanotechnology 18(4) (2007)Google Scholar
  52. 52.
    Weber, B., Mahapatra, S. Ryu, H. Lee, S. Fuhrer, A., Reusch, T.C.G., Thompson, D. L., Lee, W.C.T., Klimeck, G., Hollenberg, L. C. L., Simmons, M.Y. : Ohm’s law survives to the atomic-scale. Science 335 (6064), 64–67 (2012)Google Scholar
  53. 53.
    Scappucci, G., Capellini, G., Johnston, B., Klesse, W.M., Miwa, J.A., Simmons, M.Y.: A complete fabrication route for atomic-scale, donor-based devices in single-crystal germanium. Nano Lett. 11(6), 2272–2279 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    Simmons, M.Y., Ruess, F.J., Goh, K.E.J., Pok, W., Hallam, T., Butcher, M.J., Reusch, T.C.G., Scappucci, G.: Atomic-scale silicon device fabrication. Int. J. Nanotechnol. 5(2–3), 352–369 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    Ruess, F.J., Pok, W., Goh, K.E.J., Hamilton, A.R., Simmons, M.Y.: Electronic properties of atomically abrupt tunnel junctions in silicon. Phys. Rev. B 75(12) (2007)Google Scholar
  56. 56.
    Kouwenhoven, L.P., Marcus, C.M., McEuen, P.L., Tarucha, S., Westervelt, R.M., Wingreen, N.S.: Electron transport in quantum dots. In: Sohn, L.L., Kouwenhoven, L.P., Schon, G. (eds.) NATO Advanced Study Institute on Mesoscopic Electron Transport, Curacao, Neth Antilles, p. 105–214. Springer (1997)Google Scholar
  57. 57.
    Fuhrer, A., Fuechsle, M., Reusch, T.C.G., Weber, B., Simmons, M.Y.: Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. Nano Lett. 9(2), 707–710 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Lee, W.C.T., Scappucci, G., Thompson, D.L., Simmons, M.Y.: Development of a tunable donor quantum dot in silicon. Appl. Phys. Lett. 96(4) (2010).Google Scholar
  59. 59.
    Pierre, M., Wacquez, R., Jehl, X., Sanquer, M., Vinet, M., Cueto, O.: Single-donor ionization energies in a nanoscale CMOS channel. Nat. Nanotechnol. 5(2), 133–137 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    Carter, D.J., Warschkow, O., Marks, N.A., McKenzie, D.R.: Electronic structure models of phosphorus delta-doped silicon. Phys. Rev. B 79(3) (2009)Google Scholar
  61. 61.
    Boykin, T.B., Klimeck, G., Eriksson, M.A., Friesen, M., Coppersmith, S.N., von Allmen, P., Oyafuso, F., Lee, S.: Valley splitting in strained silicon quantum wells. Appl. Phys. Lett. 84(1), 115–117 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    Qian, G.F., Chang, Y.C., Tucker, J.R.: Theoretical study of phosphorous delta-doped silicon for quantum computing. Phys. Rev. B 71(4), 9 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Australian Research Council Centre of Excellence for Quantum Computation and Communication TechnologyUniversity of New South WalesSydneyAustralia

Personalised recommendations