Silicon Surface Conductance Investigated Using a Multiple-Probe Scanning Tunneling Microscope

  • Janik Zikovsky
  • Mark H. Salomons
  • Stanislav A. Dogel
  • Robert A. Wolkow
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


A custom-built multiple probe scanning tunneling microscope (STM) was used to perform measurements of the surface conductivity of Si(111)-7 × 7 and H–Si(111)-1 × 1 surfaces. Metallic contacts with points spaced <1 μm, deposited via electron-beam lithography, were used as contact points for two probes, while a central STM tip imaged the region between the contacts. A novel imaging method measuring the fraction of the tunneling current flowing to each contact was used to image surface conductivity with nanometer resolution. Si(111)-7 × 7 was shown to be significantly more conductive than H–Si(111)-1 × 1. Additionally, the resistance of single atomic steps on the Si(111)-7 × 7 was imaged using this method.


Scanning Tunneling Microscope Metal Contact Scanning Tunneling Microscope Imaging Dangling Bond Scanning Tunneling Microscope Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wolkow, R.A.: Controlled molecular adsorption on silicon: Laying a foundation for molecular devices. Annu. Rev. Phys. Chem. 50, 413–441 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Pitters, J.L., Dogel, I.A., et al.: Charge control of surface dangling bonds using nanoscale schottky contacts. ACS Nano 5(3), 1984–1989 (2011)CrossRefGoogle Scholar
  3. 3.
    Piva, P.G., DiLabio, G.A., et al.: Field regulation of single-molecule conductivity by a charged surface atom. Nature 435(7042), 658–661 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Wolkow, R.A.: Electrostatically Regulated Atomic Scale Electroconductivity Device (Patent filed 09/10/2007) (2007)Google Scholar
  5. 5.
    Kirczenow, G., Piva, P. G. et al.: Modulation of electrical conduction through individual molecules on silicon by the electrostatic fields of nearby polar molecules: theory and experiment. Phys. Rev. B. 80(3), (2009)Google Scholar
  6. 6.
    Haider, M.B., Pitters, J.L., et al.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102(4), 4 (2009)CrossRefGoogle Scholar
  7. 7.
    Livadaru, L., Xue, P., et al.: Dangling-bond charge qubit on a silicon surface. New J. Phys. 12, 15 (2011)Google Scholar
  8. 8.
    Medeiros-Ribeiro, G., Ohlberg, D.A.A., et al.: Titanium disilicide nanostructures: two phases and their surfaces. Surf. Sci. 431(1–3), 116–127 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Goldfarb, I., Grossman, S., et al.: Evolution of epitaxial titanium silicide nanocrystals as a function of growth method and annealing treatments. Appl. Surf. Sci. 252(15), 5355–5360 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Binnig, G., Rohrer, H., et al.: 7X7 Reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50(2), 120–123 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    Vinh, L.T., Eddrief, M., et al.: Low-temperature formation of Si(111)7 × 7 surfaces from chemically prepared H/Si(111)-(1 × −1) surfaces. Appl. Phys. Lett. 64(24), 3308–3310 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Higashi, G.S., Chabal, Y.J., et al.: Ideal hydrogen termination of the Si-(111) surface. Appl. Phys. Lett. 56(7), 656–658 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    Angermann, H., Kliefoth, K., et al.: Preparation of H-terminated Si surfaces and their characterisation by measuring the surface state density. Appl. Surf. Sci. 104, 107–112 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Rhoderick, E.H., Williams, R.H.: Metal-Semiconductor Contacts. Oxford University Press, Oxford (1988)Google Scholar
  15. 15.
    Muralt, P., Pohl, D.W.: Scanning tunneling potentiometry. Appl. Phys. Lett. 48(8), 514–516 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    Losio, R., Altmann, K.N., et al.: Fermi surface of Si(111)7 × 7. Phys. Rev. B 61(16), 10845–10853 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Northrup, J.E.: Origin of surface-states on Si(111)(7 × 7). Phys. Rev. Lett. 57(1), 154–157 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    Shiraki, I., Tanabe, F., et al.: Independently driven four-tip probes for conductivity measurements in ultrahigh vacuum. Surf. Sci. 493(1–3), 633–643 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Hasegawa, S., Shiraki, I., et al.: Electrical conduction through surface superstructures measured by microscopic four-point probes. Surf. Rev. Lett. 10(6), 963–980 (2003)CrossRefGoogle Scholar
  20. 20.
    Wells, J.W., Kallehauge, J.F., et al.: Disentangling surface, bulk, and space-charge-layer conductivity in Si(111)-(7 × 7). Phys. Rev. Lett. 97(20), 206803 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Hasegawa, Y., Lyo, I.W., et al.: Measurement of surface state conductance using STM point contacts. Surf. Sci. 358(1–3), 32–37 (1996)CrossRefGoogle Scholar
  22. 22.
    Heike, S., Watanabe, S., et al.: Electron conduction through surface states of the Si(111)-(7 × 7) surface. Phys. Rev. Lett. 81(4), 890–893 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Matsuda, I., Ueno, M., et al.: Electrical resistance of a monatomic step on a crystal surface. Phys. Rev. Lett. 93(23), 236801 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Bannani, A., Bobisch, C.A., et al.: Local potentiometry using a multiprobe scanning tunneling microscope. Rev. Sci. Instrum. 79(8), 083704 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Janik Zikovsky
    • 1
  • Mark H. Salomons
    • 2
  • Stanislav A. Dogel
    • 2
  • Robert A. Wolkow
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of AlbertaEdmontonCanada
  2. 2.National Institute for NanotechnologyEdmontonCanada

Personalised recommendations