Advertisement

Multi-Probe Characterization of 1D and 2D Nanostructures Assembled on Ge(001) Surface by Gold Atom Deposition and Annealing

  • M. Wojtaszek
  • M. Kolmer
  • S. Godlewski
  • J. Budzioch
  • B. Such
  • F. Krok
  • M. SzymonskiEmail author
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

The demand to discover new, alternative solutions in future electronics has currently focused the attention on the possible use of single atomic wires and conductive mesa pads as components in electronic circuits. For such applications, we need a good knowledge of structural and electronic properties of 1D and 2D conductive nanostructures fabricated on large and/or moderate band gap semiconductor surfaces. This chapter is reporting on case studies invoking preparation of well organized atomic wires and 2D conductive pads by self-assembly of gold atoms on clean, reconstructed Ge(001) surface. Structural characterization of the fabricated nanostructures was performed with atomic resolution on low temperature scanning tunneling microscope (LT-STM) and multi-probe STM designed by Omicron Nanotechnology GmbH. Using the far field, high resolution scanning electron microscope (SEM), the pre-prepared nanostructures were identified after an UHV transfer into a multi-probe station of the system, and their surface conductance was measured with two STM probes. The conductance dependence as a function of the inter-probe distance confirmed 2D (surface) character of the Au rich nanostructures assembled on Ge(001).

Keywords

Ge(001) Gold nanowires Self-assembly Surface conductance Multi-probe STM Scanning tunneling microscope Scanning electron microscopy 

Notes

Acknowledgments

Founding for this research has been provided by EC under Large-scale Integrating Project in FET Proactive of the 7th FP entitled “Atomic scale and single molecule logic gate technologies, AtMol”. The research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08). S.G. acknowledges financial support received from the Foundation for Polish Science within START program (2010 and 2011).

References

  1. 1.
    Benson, J.A., Hansen, J.C., McEllistrem, M.T., Clendening, W.D., Tobin, J.G.: An investigation of the Au/Ge(001) interface. Surf. Sci. 193, 37–46 (1988)CrossRefGoogle Scholar
  2. 2.
    Wang, J., Li, M., Altman, E.I.: Scanning tunneling microscopy study of self-organized Au atomic chain growth on Ge(001). Phys. Rev. B 70, 233312 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, J., Li, M., Altman, E.I.: Scanning tunneling microscopy study of Au growth on Ge(001): bulk migration, self-organization, and clustering. Surf. Sci. 596, 126–143 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Schaefer, J., Blumenstein, C., Meyer, S., Wisniewski, M., Claessen, R.: New model system for a one-dimensional electron liquid: self-organized atomic gold chains on Ge(001). Phys. Rev. Lett. 101, 236802 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    van Houselt, A., Fischer, M., Poelsema, B., Zandvliet, H.J.W.: Giant missing row re-construction of Au on Ge(001). Phys. Rev. B 78, 233410 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Nakatsuji, K., Niikura, R., Shibata, Y., Yamada, M., Iimori, T., Komori, F.: Anisotropic two-dimensional metallic state of Ge(001) c(8 × 2)-Au surfaces: an angle-resolved photoelectron spectroscopy. Phys. Rev. B 80, 081406(R) (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Sauer, S., Fuchs, F., Bechstedt, F., Blumenstein, C., Schaefer, J.: First-principles studies of Au-induced nanowires on Ge(001). Phys. Rev. B 81, 075412 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    Lopez-Moreno, S., Romero, A. H., Munoz, A., Schwingenschloegl, U.: First-principles description of atomic gold chains on Ge(001). Phys. Rev. B 81, 041415 (2010) Google Scholar
  9. 9.
    Niikura, R., Nakatsuji, K., Komori, F.: Local atomic and electronic structure of Au-adsorbed Ge(001) surfaces: scanning tunneling microscopy and x-ray photoemission spectroscopy. Phys. Rev. B 83, 035311 (2011)Google Scholar
  10. 10.
    Meyer, S., Schaefer, J., Blumenstein, C., Hoepfner, P., Bostwick, A., McChesney, J. L., Rotenberg, E., Claessen, R.: Strictly one-dimensional electron system in Au chains on Ge(001) revealed by photoelectron k-space mapping. Phys. Rev. B 83, 121411(R) (2011)Google Scholar
  11. 11.
    Nakatsuji, K., Motomura, Y., Niikura, R., Komori, F.: Shape of metallic band at single-domain Au-adsorbed Ge(001) surface studied by angle-resolved photoemission spec-troscopy. Phys. Rev. B 84, 115411 (2011)Google Scholar
  12. 12.
    Blumenstein, C., Schaefer, J., Morresi, M., Mietke, S., Matzdorf, R., Claessen, R.: Symmetry-breaking phase transition without a peierls instability in conducting monoatomic chains. Phys. Rev. Lett. 107, 165702 (2011) Google Scholar
  13. 13.
    Blumenstein, C., Schaefer, J., Mietke, S., Meyer, S., Dollinger, A., Lochner, M., Cui, X.Y., Patthey, L., Matzdorf, R., Claessen, R.: Atomically controlled quantum chains hosting a Tomonaga-Luttinger liquid. Nat. Phys. 7, 776–780 (2011)CrossRefGoogle Scholar
  14. 14.
    Hofmann, P., Wells, J.W.: Surface-sensitive conductance measurements. J. Phys.: Condens. Matter 21, 013003 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Berkelaar, R. P., Sode, H., Mocking, T. F., Kumar, A., Poelsema, B., Zandvliet, H. J. W.: Molecular Bridges. J. Phys. Chem. C 115, 2268–2272 (2011)Google Scholar
  16. 16.
    Jaschinsky, P., Wensorra, J., Lepsa, M. I., Myslivecek, J., Voigtlaender, B.: Nanoscale charge transport measurements using a double-tip scanning tunneling microscope. J. Appl. Phys. 104, 094307 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Wojtaszek
    • 1
  • M. Kolmer
    • 1
  • S. Godlewski
    • 1
  • J. Budzioch
    • 1
  • B. Such
    • 1
  • F. Krok
    • 1
  • M. Szymonski
    • 1
    Email author
  1. 1.Faculty of Physics, Astronomy, and Applied Computer Science, Research Center for Nanometer-Scale Science and Advanced Materials, NANOSAMJagiellonian UniversityKrakowPoland

Personalised recommendations