Advertisement

Surface Conductance Measurements on a MoS2 Surface Using a UHV-Nanoprobe System

  • R. ThamankarEmail author
  • O. A. Neucheva
  • T. L. Yap
  • C. Joachim
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

We present detailed information about the first experiments performed on the A*STAR UHV-Nanoprobe system in Singapore. As a model system, naturally occurring MoS2 surface was considered for those measurements. This surface is interesting as it is easy to prepare and shows a surface band gap of about 1.3 eV close to that of a Si(100)H surface. Two tip surface I–V measurements were performed by varying the inter-tip distance down to 100 nm. A transition from nonlinear to linear I–V characteristics are seen when the 2 tip separation is below 1 μm.

Keywords

UHV-Nanoprobe Scanning electron microscope (SEM) Conductivity MoS2 Molecular electronics 

Notes

Acknowledgments

The authors wish to thank the A*STAR VIP “Atom Technology” project under project no. 1021100972 and the European AtMol Integrated Project funding under the contract no. 270028.

References

  1. 1.
    Mann, B., Kuhn, H.: Tunneling through fatty acid salt monolayers. J. Appl. Phys. 42, 4398 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    Aviram, A., Ratner, M.: Molecular rectifier. Chem. Phys. Lett. 29, 277 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    Metzger, R.M.: Unimolecular electronics. J. Mater. Chem. 18, 4364 (2008)CrossRefGoogle Scholar
  4. 4.
    Joachim, C., Ratner, M.: Molecular electronics: some views on transport junctions and beyond. Proc. Natl. Acad. Sci. 102(25), 8801–8808 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Higuchi, S., Osamu Kubo, O., Kuramochi, H., Aono, M., Nakayama, T.: A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials. Nanotechnology 22, 285205 (2011)CrossRefGoogle Scholar
  7. 7.
    Hasegawa, S., Ichiro Shiraki, I., Tanikawa, T., Petersen, C.L., Hansen, T.M., Boggild, P., Grey, F.: Direct measurement of surface-state conductance by microscopic four-point probe method. J. Phys.: Condens. Matter 14, 8379–8392 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Hasegawa, S.: François grey, electronic transport at semiconductor surfaces—from point-contact transistor to micro-four-point probes. Surf. Sci. 500(1–3), 84 (2002)ADSGoogle Scholar
  9. 9.
    Dickinson, R.G., Pauling, L.: The crystal structure of molybdenite. J. Am. Chem. Soc. 45(6), 1466–1471 (1923)CrossRefGoogle Scholar
  10. 10.
    Hosoki, S., Hosaka, S., Hasegawa, S.: Surface modifications of MoS2 using an STM. Appl. Surf. Sci. 60/61, 643 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    Qin, X.R., Yang, D., Frindt, R.F., Irwin, J.C.: Real-space imaging of single-layer MoS2 by scanning tunneling microscopy. Phys. Rev. B 44, 3490–3493 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Yoon, Y., Ganapathi, K., Salahuddin, S.: How good can monolayer MoS2 transistors be? Nano Lett. 11(9), 3768–3773 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Hosaka, S., Hosoki, S., Hasegawa, T., Koyanagi, H., Shintani, T., Miyamoto, M.: Fabrication of nanostructures using scanning probe microscopes. J. Vac. Sci. Technol. (B) 13, 2813 (1995)CrossRefGoogle Scholar
  17. 17.
    Stupain, G.W., Leung, M.S.: Imaging of MoS2 by scanning tunneling microscopy. Appl. Phys. Lett. 51, 1560 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    Kodama, N., Hasegawa, T., Okawa, Y., Tsuruoka, T., Joachim, C., Aono, M.: Electronic states of sulfur vacancies formed on a MoS2 surface Japanese. J. App. Phys. 49, 08LB01 (2010)CrossRefGoogle Scholar
  19. 19.
    Yong, K.S., Otalvaro, D.M., Duchemin, I., Saeys, M., Joachim, C.: Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface. Phys. Rev. B 77, 205429 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Fuhr, J.D., Saúl, A., Sofo, J.O.: Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface. Phys. Rev. Lett. 92(2), 026802 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Gimzewski, J.K., Möller, R.: Transition from the tunneling regime to point con tact studied using scanning tunneling microscopy. Phys. Rev. B 36, 1284 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    Gimzewski, J.K., Möller, R., Pohl, D.W., Schlittler, R.R.: Transition from tunneling to point contact investigated by scanning tunneling microscopy and spectroscopy. Surf. Sci. 189–190, 15–23 (1987)CrossRefGoogle Scholar
  23. 23.
    Böker, Th., Severin, R., Müller, A., Janowitz, C., Manzke, R., Voß, D., Krüger, P., Mazur, A., Pollmann, J.: Band structure of MoS2, MoSe2, and α-MoTe2: angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64, 235305 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. Thamankar
    • 1
    Email author
  • O. A. Neucheva
    • 1
  • T. L. Yap
    • 1
    • 3
    • 4
  • C. Joachim
    • 1
    • 2
  1. 1.IMRE, A*STAR (Agency for Science, Technology and Research)SingaporeSingapore
  2. 2.CEMES and MANA Satellite, CNRSToulouse CedexFrance
  3. 3.GLOBALFOUNDRIES Singapore Pte LtdSingaporeSingapore
  4. 4.Department of PhysicsNational University of SingaporeSingaporeSingapore

Personalised recommendations