Skip to main content

Surface Conductance Measurements on a MoS2 Surface Using a UHV-Nanoprobe System

  • Conference paper
  • First Online:

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

We present detailed information about the first experiments performed on the A*STAR UHV-Nanoprobe system in Singapore. As a model system, naturally occurring MoS2 surface was considered for those measurements. This surface is interesting as it is easy to prepare and shows a surface band gap of about 1.3 eV close to that of a Si(100)H surface. Two tip surface I–V measurements were performed by varying the inter-tip distance down to 100 nm. A transition from nonlinear to linear I–V characteristics are seen when the 2 tip separation is below 1 μm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mann, B., Kuhn, H.: Tunneling through fatty acid salt monolayers. J. Appl. Phys. 42, 4398 (1971)

    Article  ADS  Google Scholar 

  2. Aviram, A., Ratner, M.: Molecular rectifier. Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  3. Metzger, R.M.: Unimolecular electronics. J. Mater. Chem. 18, 4364 (2008)

    Article  Google Scholar 

  4. Joachim, C., Ratner, M.: Molecular electronics: some views on transport junctions and beyond. Proc. Natl. Acad. Sci. 102(25), 8801–8808 (2005)

    Article  ADS  Google Scholar 

  5. Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)

    Article  ADS  Google Scholar 

  6. Higuchi, S., Osamu Kubo, O., Kuramochi, H., Aono, M., Nakayama, T.: A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials. Nanotechnology 22, 285205 (2011)

    Article  Google Scholar 

  7. Hasegawa, S., Ichiro Shiraki, I., Tanikawa, T., Petersen, C.L., Hansen, T.M., Boggild, P., Grey, F.: Direct measurement of surface-state conductance by microscopic four-point probe method. J. Phys.: Condens. Matter 14, 8379–8392 (2002)

    Article  ADS  Google Scholar 

  8. Hasegawa, S.: François grey, electronic transport at semiconductor surfaces—from point-contact transistor to micro-four-point probes. Surf. Sci. 500(1–3), 84 (2002)

    ADS  Google Scholar 

  9. Dickinson, R.G., Pauling, L.: The crystal structure of molybdenite. J. Am. Chem. Soc. 45(6), 1466–1471 (1923)

    Article  Google Scholar 

  10. Hosoki, S., Hosaka, S., Hasegawa, S.: Surface modifications of MoS2 using an STM. Appl. Surf. Sci. 60/61, 643 (1992)

    Article  ADS  Google Scholar 

  11. Qin, X.R., Yang, D., Frindt, R.F., Irwin, J.C.: Real-space imaging of single-layer MoS2 by scanning tunneling microscopy. Phys. Rev. B 44, 3490–3493 (1991)

    Article  ADS  Google Scholar 

  12. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)

    Article  ADS  Google Scholar 

  13. Yoon, Y., Ganapathi, K., Salahuddin, S.: How good can monolayer MoS2 transistors be? Nano Lett. 11(9), 3768–3773 (2011)

    Article  ADS  Google Scholar 

  14. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010)

    Article  ADS  Google Scholar 

  15. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  16. Hosaka, S., Hosoki, S., Hasegawa, T., Koyanagi, H., Shintani, T., Miyamoto, M.: Fabrication of nanostructures using scanning probe microscopes. J. Vac. Sci. Technol. (B) 13, 2813 (1995)

    Article  Google Scholar 

  17. Stupain, G.W., Leung, M.S.: Imaging of MoS2 by scanning tunneling microscopy. Appl. Phys. Lett. 51, 1560 (1987)

    Article  ADS  Google Scholar 

  18. Kodama, N., Hasegawa, T., Okawa, Y., Tsuruoka, T., Joachim, C., Aono, M.: Electronic states of sulfur vacancies formed on a MoS2 surface Japanese. J. App. Phys. 49, 08LB01 (2010)

    Article  Google Scholar 

  19. Yong, K.S., Otalvaro, D.M., Duchemin, I., Saeys, M., Joachim, C.: Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface. Phys. Rev. B 77, 205429 (2008)

    Article  ADS  Google Scholar 

  20. Fuhr, J.D., Saúl, A., Sofo, J.O.: Scanning tunneling microscopy chemical signature of point defects on the MoS2(0001) surface. Phys. Rev. Lett. 92(2), 026802 (2004)

    Article  ADS  Google Scholar 

  21. Gimzewski, J.K., Möller, R.: Transition from the tunneling regime to point con tact studied using scanning tunneling microscopy. Phys. Rev. B 36, 1284 (1987)

    Article  ADS  Google Scholar 

  22. Gimzewski, J.K., Möller, R., Pohl, D.W., Schlittler, R.R.: Transition from tunneling to point contact investigated by scanning tunneling microscopy and spectroscopy. Surf. Sci. 189–190, 15–23 (1987)

    Article  Google Scholar 

  23. Böker, Th., Severin, R., Müller, A., Janowitz, C., Manzke, R., Voß, D., Krüger, P., Mazur, A., Pollmann, J.: Band structure of MoS2, MoSe2, and α-MoTe2: angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64, 235305 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the A*STAR VIP “Atom Technology” project under project no. 1021100972 and the European AtMol Integrated Project funding under the contract no. 270028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thamankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thamankar, R., Neucheva, O.A., Yap, T.L., Joachim, C. (2012). Surface Conductance Measurements on a MoS2 Surface Using a UHV-Nanoprobe System. In: Joachim, C. (eds) Atomic Scale Interconnection Machines. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28172-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28172-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28171-6

  • Online ISBN: 978-3-642-28172-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics