Advertisement

High Precision Local Electrical Probing: Potential and Limitations for the Analysis of Nanocontacts and Nanointerconnects

  • B. Guenther
  • M. MaierEmail author
  • J. Koeble
  • A. Bettac
  • F. Matthes
  • C. M. Schneider
  • A. Feltz
Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

The variety of approaches for individual nanoscale devices is tremendous. In contrast however, comprehensive concepts toward electrically integrated and therefore functional devices are rare. The individual metallic contact interface represents one of the main challenges and high precision local electrical probing has the potential to increase efficiency in evaluating different approaches. To meet the involved requirements, we have established and being advancing an approach for nano-scale electrical probing at low temperatures by integrating scanned probe microscopic (SPM) technology with high resolution electron microscopy.

References

  1. 1.
    Gorzny, M.L., Walton, A.S., Wnek, M., Stockley, P.G., Evans, S.D.: Four-probe electrical characterization of Pt-coated TMV-based nanostructures. Nanotechnology 19, 165704–165708 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Wei, Z., Wang, D., Kim, S., Kim, S.Y., Hu, Y., Yakes, M.K., Laracuente, A.R., Dai, Z., Marder, S.R., Berger, C., King, W.P., de Heer, W.A., Sheehan, P.E., Riedo, E.: Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Bannani, A., Bobisch, C., Möller, R.: Ballistic electron microscopy of individual molecules. Science 315, 1824–1828 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Sutter, P.W., Flege, J.I., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Soubiron, T., Stiufiuc, R., Patout, L., Deresmes, D., Grandidier, B., Stievenard, D., Koeble, J., Maier, M.: Transport limitations and Schottky barrier height in titanium silicide nanowires grown on the Si(111) surface. Appl. Phys. Lett. 90, 102112–102114 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Walton, A.S., Allen, C.S., Critchley, K., Gorzny, M.L., Mc Kendy, J.E., Brydson, R.M.D., Hickey, B.J., Evans, S.D.: Four-probe electrical transport measurements on individual metallic nanowires. Nanotechnology 18, 065204–065209 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Borras, A., Groening, O., Koeble, J., Groening, P.: Connecting organic nanowires. Adv. Mater. 21, 4816–4819 (2009)CrossRefGoogle Scholar
  8. 8.
    Huang, Q., Lilley, C.M., Divan, R.: An in situ investigation of electromigration in Cu nanowires. Nanotechnology 29, 075706–075711 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Simpkins, B.S., Pehrsson, P.E., Laracuente, A.R.: Electronic conduction in GaN nanowires. Appl. Phys. Lett. 88, 072111–072113 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. Guenther
    • 1
  • M. Maier
    • 1
    Email author
  • J. Koeble
    • 1
  • A. Bettac
    • 1
    • 2
  • F. Matthes
    • 2
  • C. M. Schneider
    • 2
  • A. Feltz
    • 1
  1. 1.Omicron NanoTechnology GmbHTaunussteinGermany
  2. 2.Forschungszentrum JülichJülichGermany

Personalised recommendations