Low Power or High Performance? A Tradeoff Whose Time Has Come (and Nearly Gone)

  • JeongGil Ko
  • Kevin Klues
  • Christian Richter
  • Wanja Hofer
  • Branislav Kusy
  • Michael Bruenig
  • Thomas Schmid
  • Qiang Wang
  • Prabal Dutta
  • Andreas Terzis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7158)


Some have argued that the dichotomy between high-performance operation and low resource utilization is false – an artifact that will soon succumb to Moore’s Law and careful engineering. If such claims prove to be true, then the traditional 8/16- vs. 32-bit power-performance tradeoffs become irrelevant, at least for some low-power embedded systems. We explore the veracity of this thesis using the 32-bit ARM Cortex-M3 microprocessor and find quite substantial progress but not deliverance. The Cortex-M3, compared to 8/16-bit microcontrollers, reduces latency and energy consumption for computationally intensive tasks as well as achieves near parity on code density. However, it still incurs a ~2× overhead in power draw for “traditional” sense-store-send-sleep applications. These results suggest that while 32-bit processors are not yet ready for applications with very tight power requirements, they are poised for adoption everywhere else. Moore’s Law may yet prevail.


Sensor Network Wireless Sensor Network Sleep Mode Direct Memory Access Clear Channel Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin, D., Guibas, L., Kansal, A., Madden, S., Reich, J.: Mobiscopes for human spaces. IEEE Pervasive Computing 6, 20–29 (2007)CrossRefGoogle Scholar
  2. 2.
    Ali, A.M., Yao, K., Collier, T.C., Taylor, C.E., Blumstein, D.T., Girod, L.: An empirical study of collaborative acoustic source localization. In: IPSN (2007)Google Scholar
  3. 3.
  4. 4.
    Aslam, F., Schindelhauer, C., Ernst, G., Spyra, D., Meyer, J., Zalloom, M.: Introducing takatuka: a java virtualmachine for motes. In: SenSys (2008)Google Scholar
  5. 5.
    Atmel Corporation. Atmel ATMega 128 Microcontroller Datasheet,
  6. 6.
    Atmel Corporation. AT91 ARM Cortex-M3 based MCUs: SAM3U Specifications (2009)Google Scholar
  7. 7.
    Chen, Y., Gnawali, O., Kazandjieva, M., Levis, P., Regehr, J.: Surviving Sensor Network Software Faults. In: SOSP (2009)Google Scholar
  8. 8.
    Coalition for American Trauma Care. Action Needed to Bolster Nation’s Emergency Care System (June 2006)Google Scholar
  9. 9.
    Crossbow Inc. Imote2: High-Performance Wireless Sensor Network Node (2007),
  10. 10.
    Crossbow Technology Inc. MICAz wireless measurement system (June 2004),
  11. 11.
    Free2move AB. Low power Audio BluetoothTM Module with antenna F2M03ALA Datasheet (2007),
  12. 12.
    Freescale Semiconductor. Three axis low-g micromachined accelerometer,
  13. 13.
    Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for network programming at scale. In: SenSys (November 2004)Google Scholar
  14. 14.
    Klues, K., Handziski, V., Lu, C., Wolisz, A., Culler, D., Gay, D., Levis, P.: Integrating Concurrency Control and Energy Management in Device Drivers. In: SOSP (2007)Google Scholar
  15. 15.
    Klues, K., Liang, C.J., Paek, J., Musaloiu-E, R., Govindan, R., Terzis, A., Levis, P.: TOSThreads: Safe and Non-invasive Preemption in TinyOS. In: SenSys (November 2009)Google Scholar
  16. 16.
    Ko, J., Dawson-Haggerty, S., Gnawali, O., Culler, D., Terzis, A.: Evaluating the Performance of RPL and 6LoWPAN in TinyOS. In: Proceedings of the Workshop on Extending the Internet to Low Power and Lossy Networks (IP+SN 2011) (April 2011)Google Scholar
  17. 17.
    Ko, J., Lim, J., Chen, Y., Musaloiu-E., R., Terzis, A., Masson, G., Gao, T., Destler, W., Selavo, L., Dutton, R.: MEDiSN: Medical Emergency Detection in Sensor Networks. ACM Transactions on Embedded Computing Systems, TECS (2010)Google Scholar
  18. 18.
    Kusy, B., Richter, C., Hu, W., Afanasyev, M., Jurdak, R., Brunig, M., Abbott, D., Huynh, C., Ostry, D.: Radio diversity for reliable communication in wsns. In: IPSN (April 2011)Google Scholar
  19. 19.
    Liang, C.-J.M., Priyantha, N.B., Liu, J., Terzis, A.: Surviving wi-fi interference in low power zigbee networks. In: SenSys (2010)Google Scholar
  20. 20.
    Lorincz, K., Chen, B.R., Challen, G.W., Chowdhury, A.R., Patel, S., Bonato, P., Welsh, M.: Mercury: A Wearable Sensor Network Platform for High-Fidelity Motion Analysis. In: SenSys (2009)Google Scholar
  21. 21.
    Luo, L., Cao, Q., Huang, C., Abdelzaher, T., Stankovic, J.A., Ward, M.: Enviromic: Towards cooperative storage and retrieval in audio sensor networks. In: ICDCS (2007)Google Scholar
  22. 22.
    Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: An Ad Hoc Sensor Network Infrastructure for Emergency Medical Care. In: MobiSys 2004 Workshop on Applications of Mobile Embedded Systems (June 2004)Google Scholar
  23. 23.
    McIntire, D., Ho, K., Yip, B., Singh, A., Wu, W., Kaiser, W.: The low power energy aware processing (LEAP) embedded networked sensor system. In: IPSN/SPOTS (2006)Google Scholar
  24. 24.
    Moss, D., Hui, J., Klues, K.: TEP 105: Low Power Listening (2008),
  25. 25.
    Paek, J., Greenstein, B., Gnawali, O., Jang, K.-Y., Joki, A., Vieira, M., Hicks, J., Estrin, D., Govindan, R., Kohler, E.: The tenet architecture for tiered sensor networks. ACM Transactions on Sensor Networks (TOSN) 6(4) (2010)Google Scholar
  26. 26.
    Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research. In: IPSN (2005)Google Scholar
  27. 27.
    Reddy, P.G., Sridhar, N.: Lakon: a middle-ground approach to high-frequency data acquisition and in-network processing in sensor networks. In: IPSN. ACM (2010)Google Scholar
  28. 28.
    Rumberg, B., Graham, D.W., Kulathumani, V.: Hibernets: energy-efficient sensor networks using analog signal processing. In: IPSN (2010)Google Scholar
  29. 29.
    Sadasivan, S.: An Introduction to the ARM Cortex-M3 Processor. Technical report (2006)Google Scholar
  30. 30.
    Sadler, C., Martonosi, M.: Data compression algorithms for energy-constrained devices in delay tolerant networks. In: SenSys (November 2006)Google Scholar
  31. 31.
    Schmid, T., Shea, R., Srivastava, M.B., Dutta, P.: Disentangling wireless sensing from mesh networking. In: HotEmNets (2010)Google Scholar
  32. 32.
    Schott, B., Bajura, M., Czarnaski, J., Flidr, J., Tho, T., Wang, L.: A modular power-aware microsensor with >1000x dynamic power range. In: IPSN (2005)Google Scholar
  33. 33.
    Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: Java on the bare metal of wireless sensor devices: the squawk java virtual machine. In: International Conference on Virtual Execution Environments (2006)Google Scholar
  34. 34.
    Skraba, P., Guibas, L.: Energy Efficient Intrusion Detection in Camera Sensor Networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 309–323. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Smith, R.B.: Spotworld and the sun spot. In: IPSN (April 2007)Google Scholar
  36. 36.
    Texas Instruments. CC2520: Second generation 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver (2007),
  37. 37.
    Texas Instruments Incorporated. MSP430 DatasheetGoogle Scholar
  38. 38.
    Wood, A., Stankovic, J., Virone, G., Selavo, L., He, Z., Cao, Q., Doan, T., Wu, Y., Fang, L., Stoleru, R.: Context-Aware Wireless Sensor Networks for Assisted Living and Residential Monitoring. IEEE Network (2008)Google Scholar
  39. 39.
    Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan, R., Estrin, D.: A Wireless Sensor Network for Structural Monitoring. In: SenSys (November 2004)Google Scholar
  40. 40.
    Zephyr Technology. BioHarness BT (2010),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • JeongGil Ko
    • 1
  • Kevin Klues
    • 2
  • Christian Richter
    • 3
  • Wanja Hofer
    • 4
  • Branislav Kusy
    • 3
  • Michael Bruenig
    • 3
  • Thomas Schmid
    • 5
  • Qiang Wang
    • 6
  • Prabal Dutta
    • 7
  • Andreas Terzis
    • 1
  1. 1.Department of Computer ScienceJohns Hopkins UniversityUSA
  2. 2.Computer Science DivisionUniversity of CaliforniaBerkeleyUSA
  3. 3.Australian Commonwealth Scientific and Research Organization (CSIRO)Australia
  4. 4.Department of Computer ScienceFriedrich–Alexander University Erlangen–NurembergGermany
  5. 5.Department Computer ScienceUniversity of UtahUSA
  6. 6.Department of Control Science and EngineeringHarbin Institute of TechnologyChina
  7. 7.Division of Computer Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations