Foisting and Stealing of Keys in Sensor Networks

  • Peng Wang
  • Chinya Ravishankar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7158)


We consider cryptographic key establishment in sensor networks without PKI or trusted third parties, using pairwise trust relationships between intermediaries. We describe a novel attack called key foisting that defeats current schemes, compromising 90% of the path keys with only 10% of the sensors in the network seized. We then present a two-way path-key establishment scheme that resists foisting. It reduces the probability of successful key foisting to nearly zero even with 20% of sensors seized. Its overhead is affordable, and its resilience is excellent.


Sensor Network Wireless Sensor Network Agent Pair Sensor Pair Reverse Half 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Comput. Netw. 54, 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Vermesan, O., Harrison, M., Vogt, H., Kalaboukas, K., Tomasella, M., Wouters, K., Gusmeroli, S., Haller, S.: Internet of things—strategic research roadmap. Technical report, European Commission - Information Society and Media DG (2009)Google Scholar
  3. 3.
    Adams, C., Lloyd, S.: Understanding PKI: Concepts, Standards, and Deployment Considerations, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)Google Scholar
  4. 4.
    Schneier, B.: Applied cryptography: Protocols, algorithms, and source code in c, 2nd edn. Wiley (1995)Google Scholar
  5. 5.
    Chan, H., Perrig, A., Song, D.: Secure hierarchical in-network aggregation in sensor networks. In: CCS 2006: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 278–287. ACM, New York (2006)Google Scholar
  6. 6.
    Di Pietro, R., Mancini, L., Jajodia, S.: Providing secrecy in key management protocols for large wireless sensors networks. Ad Hoc Networks 1, 455–468 (2003)CrossRefGoogle Scholar
  7. 7.
    Douceur, J.R.: The sybil attack. In: 1st International Workshop on Peer-to-Peer Systems (2002)Google Scholar
  8. 8.
    Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: Attacks and countermeasures. In: First IEEE International Workshop on Sensor Network Protocols and Applications, pp. 113–127 (2002)Google Scholar
  9. 9.
    Ni, J., Zhou, L., Ravishankar, C.V.: Dealing with random and selective attacks in wireless sensor systems. ACM Transactions on Sensor Networks 6 (2010)Google Scholar
  10. 10.
    Przydatek, B., Song, D., Perrig, A.: Sia: secure information aggregation in sensor networks. In: SenSys 2003: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp. 255–265. ACM, New York (2003)Google Scholar
  11. 11.
    Chan, H., Perrig, A.: Pike: Peer intermediaries for key establishment in sensor networks. In: Proceedings of IEEE Infocom., pp. 524–535 (2005)Google Scholar
  12. 12.
    Du, W., Deng, J., Han, Y.S., Varshney, P.K., Katz, J., Khalili, A.: A pairwise key predistribution scheme for wireless sensor networks. ACM Trans. Inf. Syst. Secur. 8, 228–258 (2005)CrossRefGoogle Scholar
  13. 13.
    Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: CCS 2003: Proceedings of the 10th ACM Conference on Computer and Communications Security, pp. 52–61. ACM, New York (2003)Google Scholar
  14. 14.
    Liu, D., Ning, P., Du, W.: Group-based key predistribution for wireless sensor networks. ACM Trans. Sen. Netw. 4, 1–30 (2008)CrossRefGoogle Scholar
  15. 15.
    Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: SP 2003: Proceedings of the 2003 IEEE Symposium on Security and Privacy, p. 197. IEEE Computer Society, Washington, DC (2003)CrossRefGoogle Scholar
  16. 16.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: CCS 2002: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 41–47. ACM, New York (2002)Google Scholar
  17. 17.
    Di Pietro, R., Mancini, L.V., Mei, A., Panconesi, A., Radhakrishnan, J.: Redoubtable sensor networks. ACM Trans. Inf. Syst. Secur. 11, 13:1–13:22 (2008)Google Scholar
  18. 18.
    Blom, R.: An Optimal Class of Symmetric Key Generation Systems. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  19. 19.
    Li, G., Ling, H., Znati, T.: Path key establishment using multiple secured paths in wireless sensor networks. In: CoNEXT 2005: Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, pp. 43–49. ACM, New York (2005)Google Scholar
  20. 20.
    Zhu, S., Setia, S., Jajodia, S.: LEAP+: Efficient security mechanisms for large-scale distributed sensor networks. ACM Transactions on Sensor Networks (TOSN) 2, 528 (2006)CrossRefGoogle Scholar
  21. 21.
    Dolev, D., Yao, A.C.: On the security of public key protocols. In: Annual IEEE Symposium on Foundations of Computer Science, pp. 350–357 (1981)Google Scholar
  22. 22.
    Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks: analysis & defenses. In: IPSN 2004: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, pp. 259–268. ACM, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peng Wang
    • 1
  • Chinya Ravishankar
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations