Towards Extending Sensor Node Lifetime with Printed Supercapacitors

  • Andrey Somov
  • Christine C. Ho
  • Roberto Passerone
  • James W. Evans
  • Paul K. Wright
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7158)

Abstract

The realization of completely autonomous wireless sensor networks (WSN) has been hindered with difficulties in implementing a truly “perpetual” power supply. Typically, the generic power supply for a sensor node is a battery, which is limited in cycle life. Current research in energy scavenging technology, along with the use of innovative energy storage devices such as supercapacitors, has demonstrated the improvement of sensor node lifetime characteristics. In this paper, we present the experimental results on a novel electrochemical supercapacitor (with improved electrical characteristics) manufactured using a “direct write” deposition tool. This technology allows one to print the supercapacitors with capacitances above 40 mF/cm2 directly on board of a sensor node covering any unoccupied surface area. Experiments on the printed storage chrarging with (AC) and (DC) based ambient energy via a specially developed generic energy scavenging module (ESM), and 24-hours deployment with a typical sensor node have showed promise towards extending sensor node lifetime.

Keywords

wireless sensor network energy scavenging direct write electrochemical capacitor power supply and management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Selavo, L., Wood, A., Cao, Q., SooKoor, T., Liu, H., Srinivasan, A., Wu, Y., Kang, W., Stankovic, J., Young, D., Porter, J.: LUSTER: Wireless Sensor Network for Environmental Research. In: 5th International Conference on Embedded Networked Sensor Systems, Sydney, Australia, pp. 103–116 (2007)Google Scholar
  2. 2.
    Simjee, F., Chou, P.H.: Everlast: Long-life, Supercapacitor-operated Wireles Sensor Node. In: International Symposium on Low Power Electronics and Design, Tegernsee, Germany, pp. 197–202 (2006)Google Scholar
  3. 3.
    Jiang, X., Polastre, J., Culler, D.: Perpetual Environmentally Powered Sensor Networks. In: 4th International Symposium on Information Processing in Sensor Network, pp. 463–468 (2005)Google Scholar
  4. 4.
    Zhang, P., Sadler, C.M., Lyon, S.A., Martonosi, M.: Hardware Design Experience in ZebraNet. In: 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, USA, pp. 227–238 (2004)Google Scholar
  5. 5.
    Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design Considerations for Solar Energy Harvesting Wireless Embedded Systems. In: 4th International Symposium on Information Processing in Sensor Networks, pp. 457–462 (2005)Google Scholar
  6. 6.
    Chee, Y.H., Koplow, M., Mark, M., Pletcher, N., Seeman, M., Burghardt, F., Steingart, D., Rabaey, J., Wright, P., Sanders, S.: PicoCube: A 1cm3 Sensor Node Powered by Harvested Energy. In: Design Automation Conference, Anaheim, USA, pp. 114–119 (2008)Google Scholar
  7. 7.
  8. 8.
    Torah, R.N., Tudor, M.J., Patel, K., Garcia, I.N., Beeby, S.P.: Autonomous Low Power Microsystem Powered by Vibration Energy Harvesting. In: 6th Annual IEEE Conference on Sensors, Atlanta, USA, pp. 264–267 (2007)Google Scholar
  9. 9.
    Park, C., Chou, P.H.: AmbiMax: Autonomous Energy Harvesting Platform for Multi-Supply Wireless Sensor Nodes. In: 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, vol. 1, pp. 168–177 (2006)Google Scholar
  10. 10.
    Roundy, S., Wright, P.K., Rabaey, J.M.: Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations. Kluwer Academic Publishers Group, Boston (2003)Google Scholar
  11. 11.
    Simon, P., Gogotsi, Y.: Materials for Electrochemical Capacitors. Nature Materials 7, 845–854 (2008)CrossRefGoogle Scholar
  12. 12.
    Kotz, R., Carlen, M.: Principles and Applications of Electrochemical Capacitors. Electrochimica Acta 45, 2483–2498 (2000)CrossRefGoogle Scholar
  13. 13.
    Conway, B.: Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications. Kluwer Academic, New York (1999)Google Scholar
  14. 14.
    Lewandowski, A., Galiński, M.: Carbon – Ionic Liquid Double-Layer Capacitors. Physics and Chemistry of Solids 65, 281–286 (2004)CrossRefGoogle Scholar
  15. 15.
    Forsyth, S.A., Pringle, J.M., MacFarlane, D.R.: Ionic Liquids – an Overview. Australian Journal of Chemistry 57, 113–119 (2004)CrossRefGoogle Scholar
  16. 16.
    Ho, C.C., Steingart, D.A., Evans, J.W., Wright, P.K.: Tailoring Electrochemical Capacitor Energy Storage Using Direct Write Dispenser Printing. ECS Transactions 16(1), 35–47 (2008)CrossRefGoogle Scholar
  17. 17.
    Hart, J.P., Wring, S.A.: Recent Developments in the Design and Application of Screen-Printed Electrochemical Sensors for Biomedical, Environmental and 115 Industrial Analyses. TrAC Trends in Analytical Chemistry 16(2), 89–103 (1997)CrossRefGoogle Scholar
  18. 18.
    Arnold, C.B., Pique, A.: Laser Direct-Write Processing. Mrs Bulletin 32, 9–12 (2007)CrossRefGoogle Scholar
  19. 19.
    Steingart, D.A., Ho, C.C., Salminen, J., Evans, J.W., Wright, P.K.: Dispenser Printing of Solid Polymer – Ionic Liquid Electrolytes for Lithium Ion Cells. In: 6th International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Oadaiba, Tokyo, Japan, pp. 261–264 (2007)Google Scholar
  20. 20.
    Phipps, A., Liu, F., Cattafesta, L., Sheplak, M., Nishida, T.: Demonstartion of a Wireless, Self-Powered, Electroacoustic Liner System. Acoustic Society of America 125(2), 873–881 (2009)CrossRefGoogle Scholar
  21. 21.
    Roundy, S., Wright, P.K., Rabaey, J.: A Study of Low Level Vibrations as a Power Source for Wireless Sensor Node. Computer Communications (Elsevier) 26, 1131–1144 (2003)CrossRefGoogle Scholar
  22. 22.
    Raghunathan, V., Chou, P.H.: Design and Power Management of Energy Harvesting Embedded Systems. In: Internationsl Symposium on Low Power Electronics and Design, Togernsee, Germany, pp. 369–374 (2006)Google Scholar
  23. 23.
    Memsic, Mica2 mote, http://www.memsic.com
  24. 24.
    Brunelli, D., Moser, C., Thiele, L., Benini, L.: Design of a Solar-harvesting Circuit for Batteryless embedded Systems. IEEE Transactions on Circuits and Systems I: Regular papers 56(11), 2519–2528 (2009)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrey Somov
    • 1
  • Christine C. Ho
    • 2
  • Roberto Passerone
    • 3
  • James W. Evans
    • 4
  • Paul K. Wright
    • 4
    • 5
  1. 1.CREATE-NETTrentoItaly
  2. 2.Imprint EnergyBerkeleyUSA
  3. 3.University of TrentoTrentoItaly
  4. 4.University of CaliforniaBerkeleyUSA
  5. 5.Center for Information Technology Research in the Interest of SocietyBerkeleyUSA

Personalised recommendations