Multi-channel Two-Way Time of Flight Sensor Network Ranging

  • Paolo Pettinato
  • Niklas Wirström
  • Joakim Eriksson
  • Thiemo Voigt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7158)

Abstract

Two-way time of flight (ToF) ranging is one of the most interesting approaches for localization in wireless sensor networking since previous ToF ranging approaches using commercial off-the-shelf (COTS) devices have achieved good accuracy. The COTS-based approaches were, however, evaluated only in line-of-sight conditions. In this paper, we extend ToF ranging using multiple IEEE 802.15.4 channels. Our results demonstrate that with multiple channels we can achieve good accuracy even in non line-of-sight conditions. Furthermore, our measurements suggest that the variance between different channels serves as a good estimate of the accuracy of the measurements, which can be valuable information for applications that require localization information.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcock, P., Roedig, U., Hazas, M.: Combining Positioning and Communication Using UWB Transceivers. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS 2009. LNCS, vol. 5516, pp. 329–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Alsindi, N.A., Alavi, B., Pahlavan, K.: Measurement and modeling of ultrawideband TOA-based ranging in indoor multipath environments. IEEE Transactions on Vehicular Technology 58(3), 1046–1058 (2009)CrossRefGoogle Scholar
  3. 3.
    Bardella, A., Bui, N., Zanella, A., Zorzi, M.: An Experimental Study on IEEE 802.15.4 Multichannel Transmission to Improve RSSI–Based Service Performance. In: Marron, P.J., Voigt, T., Corke, P., Mottola, L. (eds.) REALWSN 2010. LNCS, vol. 6511, pp. 154–161. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Elson, J., Römer, K.: Wireless sensor networks: A new regime for time synchronization. ACM SIGCOMM CCR 33(1), 149–154 (2003)CrossRefGoogle Scholar
  5. 5.
    Gezici, S., et al.: Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine 22(4), 70–84 (2005)CrossRefGoogle Scholar
  6. 6.
    He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Range-free localization schemes for large scale sensor networks. In: ACM MobiCom, San Diego, USA (September 2003)Google Scholar
  7. 7.
    Texas Instruments. 2.4 ghz ieee 802.15.4 / zigbee-ready rf transceiver (rev. b), CC2420 datasheet (March 2007)Google Scholar
  8. 8.
    Texas Instruments. MSP430x2xx family user’s guide (rev. H) (December 2010)Google Scholar
  9. 9.
    Karalar, T.C., Rabaey, J.: An rf tof based ranging implementation for sensor networks. In: IEEE ICC, Istanbul, Turkey (June 2006)Google Scholar
  10. 10.
    Lanzisera, S., Lin, D.T., Pister, K.S.J.: Rf time of flight ranging for wireless sensor network localization. In: International Workshop on Intelligent Solutions in Embedded Systems (June 2006)Google Scholar
  11. 11.
    Li, X.: A selective model to suppress nlos signals in angle-of-arrival (aoa) location estimation. In: PIMR, Boston, USA (1998)Google Scholar
  12. 12.
    Mao, G., Fidan, B., Anderson, B.: Wireless sensor network localization techniques. Computer Networks 51(10), 2529–2553 (2007)CrossRefMATHGoogle Scholar
  13. 13.
    Maróti, M., Völgyesi, P., Dóra, S., Kusỳ, B., Nádas, A., Lédeczi, Á., Balogh, G., Molnár, K.: Radio interferometric geolocation. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, ACM SenSys (2005)Google Scholar
  14. 14.
    Mazomenos, E., De Jager, D., Reeve, J., White, N.: A Two-Way Time of Flight Ranging Scheme for Wireless Sensor Networks. In: Marrón, P.J., Whitehouse, K. (eds.) EWSN 2011. LNCS, vol. 6567, pp. 163–178. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Nasipuri, A., Li, K.: A directionality based location discovery scheme for wireless sensor networks. In: WSNA 2002, Atlanta, USA (September 2002)Google Scholar
  16. 16.
    Oberholzer, G., Sommer, P., Wattenhofer, R.: Spiderbat: Augmenting wireless sensor networks with distance and angle information. In: International Conference on Information Processing in Sensor Networks (IPSN) (April 2011)Google Scholar
  17. 17.
    Patwari, N., Ash, J.N., Kyperountas, S., Hero III, A.O., Moses, R.L., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine 22(4), 54–69 (2005)CrossRefGoogle Scholar
  18. 18.
    Pichler, M., Schwarzer, S., Stelzer, A., Vossiek, M.: Multi-channel distance measurement with ieee 802.15. 4 (zigbee) devices. IEEE JSAC 3(5), 845–859 (2009)Google Scholar
  19. 19.
    Priddy, K.L., Keller, P.E.: Artificial neural networks: an introduction, vol. 68 (2005)Google Scholar
  20. 20.
    Römer, K.: The lighthouse location system for smart dust. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services (ACM MobiSys), San Francisco, USA (May 2003)Google Scholar
  21. 21.
    Savarese, C., Rabaey, J.M., Beutel, J.: Location in distributed ad-hoc wireless sensor networks. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA (May 2001)Google Scholar
  22. 22.
    Venkatraman, S., Caffery Jr., J., You, H.R.: A novel toa location algorithm using los range estimation for nlos environments. IEEE Transactions on Vehicular Technology 53(5), 1515–1524 (2004)CrossRefGoogle Scholar
  23. 23.
    Zolertia. Z1 datasheet (rev. c), Zolertia Z1 datasheet (March 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paolo Pettinato
    • 1
  • Niklas Wirström
    • 1
  • Joakim Eriksson
    • 1
  • Thiemo Voigt
    • 1
  1. 1.Swedish Institute of Computer ScienceSweden

Personalised recommendations