Opportunistic, Receiver-Initiated Data-Collection Protocol

  • Stefan Unterschütz
  • Christian Renner
  • Volker Turau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7158)


This paper presents and evaluates ORiNoCo, a novel data-collection and event-reporting protocol for sensor networks. ORiNoCo is built upon the asynchronous duty-cycle protocol RI-MAC and breaks with the tradition of exchanging extensive neighborhood information, a cornerstone of many competing collection protocols and one of their major source of communication overhead and energy expenditure. The merit of this venture is an opportunistic, energy-efficient, latency-reducing, and self-stabilizing protocol. ORiNoCo comes at virtually no extra costs in terms of memory demand and communication overhead compared to RI-MAC. We derive theoretical boundaries for the improvements in radio efficiency, latency, and energy-consumption. ORiNoCo is verified with these findings via simulation and compared with CTP. ORiNoCo achieves lower energy-consumption while reducing end-to-end delays.


Power Consumption Sensor Network Sensor Node Wireless Sensor Network Packet Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alizai, M.H., Landsiedel, O., Bitsch Link, J.A., Götz, S., Wehrle, K.: Bursty Traffic Over Bursty Links. In: SenSys (2009)Google Scholar
  2. 2.
    Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks. In: SenSys (2006)Google Scholar
  3. 3.
    Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: Ultra-low Power Data Gathering in Sensor Networks. In: IPSN (2007)Google Scholar
  4. 4.
    De Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R.: A High-Throughput Path Metric for Multi-Hop Wireless Routing. In: MobiCom (2003)Google Scholar
  5. 5.
    Dutta, P., Dawson-Haggerty, S., Chen, Y., Liang, C.J.M., Terzis, A.: Design and Evaluation of a Versatile and Efficient Receiver-Initiated Link Layer for Low-Power Wireless. In: SenSys (2010)Google Scholar
  6. 6.
    Fonseca, R., Gnawali, O., Jamieson, K., Levis, P.: Four-Bit Wireless Link Estimation. In: HotNets VI (2007)Google Scholar
  7. 7.
    Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection Tree Protocol. In: SenSys (2009)Google Scholar
  8. 8.
    Hsu, J., Zahedi, S., Kansal, A., Srivastava, M., Raghunathan, V.: Adaptive Duty Cycling for Energy Harvesting Systems. In: ISLPED (October 2006)Google Scholar
  9. 9.
    Jiang, X., Polastre, J., Culler, D.: Perpetual Environmentally Powered Sensor Networks. In: IPSN (2005)Google Scholar
  10. 10.
    Kim, S., Fonseca, R., Dutta, P., Tavakoli, A., Culler, D., Levis, P., Shenker, S., Stoica, I.: Flush: a Reliable Bulk Transport Protocol for Multihop Wireless Networks. In: SenSys (2007)Google Scholar
  11. 11.
    Landsiedel, O., Johansson, M.: Poster Abstract: Towards a Life without Link Estimation. In: SenSys (2010)Google Scholar
  12. 12.
    Moss, D., Levis, P.: BoX-MACs: Exploiting Physical and Link Layer Boundaries in Low-Power Networking. Tech. rep., Stanford Information Networks Group (2008)Google Scholar
  13. 13.
    Musaloiu-E., R., Liang, C., Terzis, A.: Koala: Ultra-Low Power Data Retrieval in Wireless Sensor Networks. In: IPSN (2008)Google Scholar
  14. 14.
    Polastre, J., Hill, J., Culler, D.: Versatile Low Power Media Access for Wireless Sensor Networks. In: SenSys (2004)Google Scholar
  15. 15.
    Puccinelli, D., Gnawali, O., Yoon, S., Santini, S., Colesanti, U., Giordano, S., Guibas, L.: The Impact of Network Topology on Collection Performance. In: Marrón, P.J., Whitehouse, K. (eds.) EWSN 2011. LNCS, vol. 6567, pp. 17–32. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Recas Piorno, J., Bergonzini, C., Atienza, D., Simunic Rosing, T.: Prediction and Management in Energy Harvested Wireless Sensor Nodes. In: VITAE (2009)Google Scholar
  17. 17.
    Renner, C., Ernst, S., Weyer, C., Turau, V.: Prediction Accuracy of Link-Quality Estimators. In: Marrón, P.J., Whitehouse, K. (eds.) EWSN 2011. LNCS, vol. 6567, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Renner, C., Unterschütz, S., Turau, V.: Power Management for Wireless Sensor Networks Based on Energy Budgets. Tech. Rep. urn:nbn:de:gbv:830-tubdok-11065, Hamburg University of Technology, Hamburg, Germany (July 2011)Google Scholar
  19. 19.
    Srinivasan, K., Levis, P.: RSSI is Under Appreciated. In: EmNets (2006)Google Scholar
  20. 20.
    Sun, Y., Gurewitz, O., Johnson, D.B.: RI-MAC: A Receiver-Initiated Asynchronous Duty Cycle MAC Protocol for Dynamic Traffic Loads in Wireless Sensor Networks. In: SenSys (2008)Google Scholar
  21. 21.
    Whitehouse, K., Woo, A., Jiang, F., Polastre, J., Culler, D.: Exploiting the Capture Effect for Collision Detection and Recovery. In: EmNetS-II (2005)Google Scholar
  22. 22.
    Zuniga, M., Krishnamachari, B.: Analyzing the Transitional Region in Low Power Wireless Links. In: SECON (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefan Unterschütz
    • 1
  • Christian Renner
    • 1
  • Volker Turau
    • 1
  1. 1.Hamburg University of TechnologyHamburgGermany

Personalised recommendations