Enabling Fast Ramp-Up of Assembly Lines through Context-Mapping of Implicit Operator Knowledge and Machine-Derived Data

  • Konstantin Konrad
  • Michael Hoffmeister
  • Matthias Zapp
  • Alexander Verl
  • Johannes Busse
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 371)


Ramp-up of precision assembly lines is a cost-intensive and experience-driven task. Most of the time the knowledge how to effectively and efficiently setup an assembly line is intrinsic and is therefore neither shared nor reused by production experts. Almost no machine data is recorded until the correct functionality of the line is achieved and human problem solving tasks are not or poorly documented. In this paper a novel approach for structuring operator knowledge and combining it with machine-derived data by the use of semantic technologies is proposed. This enables human operators to express their experience in an easy to understand, machine readable way and makes it therefore accessible to other workers.


Semantics Ontology Assembly Line Knowledge Management Machine-Derived Data Operators 


  1. 1.
    Sturm, R., Dorner, J., Reddig, K., Seidelmann, J.: Simulation-based evaluation of the ramp-up behavior of waferfabs. In: ASMC 2003, the 14th annual IEEE/SEMI Advanced Semiconductor Manufacturing, pp. 111–117. IEEE, Piscataway (2003)Google Scholar
  2. 2.
    Dombrowski, U., Wesemann, S.: OEE-Kennzahl im Anlagenhochlauf bei KMU: Steigerung der Gesamtanlageneffektivität im Anlagenhochlauf bei KMU mittels der OEE-Kennzahl, Werkstattstechnik online, vol. 98, pp. 628–633 (2008) (accessed July 28, 2011) Google Scholar
  3. 3.
    Dombrowski, U., Hanke, T.: Lean Ramp-up. Ein Organisationsmodell für den effizienten Serienanlauf in KMU: Lean Ramp-up - An organisation model for efficient series ramp-ups in SME. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 104(10), 877–883 (2009)Google Scholar
  4. 4.
    Fleischer, J., Ender, T., Mössner, A.: Ressourcenmanagement für erfolgreiche Produktionsanläufe. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb H. 1-2, S42–S45 (2007) Google Scholar
  5. 5.
    Wiesinger, G., Housein, G.: Schneller Produktionsanlauf von Serienprodukten: Wettbewerbsvorteile durch ein anforderungsgerechtes Anlaufmanagement. Werkstattstechnik Online 92, 505–508 (2002)Google Scholar
  6. 6.
    Berger, U., Thiebus, S.: Wissensmanagement in der Planungsphase: Research concerning knowledge management for development of complex sub-assemblies in the automotive industry. Industrie Management 22(6) Änderungsmanagement, 39–41 (2006)Google Scholar
  7. 7.
    Fleischer, J., Wawerla, M., Nyhuis, P., Winkler, H., Liestmann, V.: Proaktive Anlaufsteuerung von Produktionssystemen entlang der Wertschöpfungskette. Proactive controlling of production ramp-ups along the value chain. Industrie Management * Band 20 (2004) Heft 4, Seite 29-32 20(4), 29–32 (2004)Google Scholar
  8. 8.
    Breslin, J.G., O’Sullivan, D., Passant, A., Vasiliu, L.: Semantic Web computing in industry. Computers in Industry 61(8), 729–741 (2010)CrossRefGoogle Scholar
  9. 9.
    W3C, Semantic Web Case Studies and Use Cases (2010), (accessed August 2, 2011)
  10. 10.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5, 199–220 (1993)CrossRefGoogle Scholar
  11. 11.
    Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy, N.F., Tu, S.W.: The evolution of Protégé: an environment for knowledge-based systems development. Int. J. Hum.-Comput. Stud. 58, 89–123 (2003)CrossRefGoogle Scholar
  12. 12.
    Ontoprise, ontoprise: OntoStudio, (accessed August 2, 2011)
  13. 13.
    Ontoprise, ontoprise: Freemind to F-logic (mm2flo), (accessed August 2, 2011)
  14. 14.
    Busse, J.: Semantic Authoring with semAuth (2011), (accessed August 9, 2011)
  15. 15.
    McBride, B.: Jena: a semantic Web toolkit. IEEE Internet Computing 6(6), 55–59 (2002)CrossRefGoogle Scholar
  16. 16.
    Jess, the Rule Engine for the Java Platform, (accessed August 2, 2011)
  17. 17.
    Schmidt, C.: Ontobroker Version 5.1 - Product Documentation (2008), (accessed August 2, 2011)
  18. 18.
    Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information. In: Meersman, R. (ed.) Database Semantics, Semantic Issues in Multimedia Systems, pp. 351–369. Kluwer Academic Publisher, Boston (1999), Google Scholar
  19. 19.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  20. 20.
    W3C, Semantic Web Stack (2007), (accessed August 2, 2011)
  21. 21.
    Lohse, N., Hirani, H., Ratchev, S.: Equipment ontology for modular reconfigurable assembly systems: Methodisches Konzept für die Umgestaltung modularer Fertigungseinrichtungen von Montagesystemen. International Journal of Flexible Manufacturing Systems 17(4), 301–314 (2005)CrossRefGoogle Scholar
  22. 22.
    FRAME. EU FP7 Project (2011), (accessed October 18, 2011)
  23. 23.
    FreeMind (2011), (accessed October 17, 2011)
  24. 24.
    Schmidt, C.: Ontobroker Version 5.1 - Product Documentation (2008), (accessed August 2, 2011)
  25. 25.
    OpenRuleBench - Benchmarks for Semantic Web Rule Engines (2011), (accessed October 19, 2011)

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Konstantin Konrad
    • 1
  • Michael Hoffmeister
    • 1
  • Matthias Zapp
    • 1
  • Alexander Verl
    • 1
  • Johannes Busse
    • 2
  1. 1.Fraunhofer Institute for Manufacturing Engineering and AutomationStuttgartGermany
  2. 2.Johannes Busse Knowledge EngineeringHeidelbergGermany

Personalised recommendations