Microfluidic Technologies

  • Ali Asgar. S. Bhagat
  • Chwee Teck Lim
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 195)


Presence of circulating tumor cells (CTCs) in blood is an important intermediate step in cancer metastasis, a mortal consequence of cancer. However, CTCs are extremely rare in blood with highly heterogeneous morphologies and molecular signatures, thus making their isolation technically very challenging. In the past decade, a flurry of new microfluidic-based technologies has emerged to address this compelling problem. This chapter highlights the current state of the art in microfluidic systems developed for CTCs separation and isolation. The techniques presented are broadly classified as physical- or affinity-based isolation depending on the separation principle. The performance of these techniques is evaluated based on accepted separation metrics including sensitivity, purity and processing/analysis time. Finally, further insights associated with realizing an integrated microfluidic CTC lab-on-chip system as an onco-diagnostic tool will be discussed.


Circulate Tumor Cell Microfluidic System Hematologic Cell Microfluidic Approach Inertial Lift Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wittekind C, Neid M (2005) Cancer invasion and metastasis. Oncology 69(1):14–16PubMedCrossRefGoogle Scholar
  2. 2.
    Budd GT et al (2006) Circulating tumor cells versus imaging—Predicting overall survival in metastatic breast cancer. Clin Cancer Res 12(21):6403–6409PubMedCrossRefGoogle Scholar
  3. 3.
    Cristofanilli M et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781PubMedCrossRefGoogle Scholar
  4. 4.
    Kaiser J (2010) Cancer’s Circulation Problem. Science 327(5969):1072–1074PubMedCrossRefGoogle Scholar
  5. 5.
    Hayes DF et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(14):4218–4224PubMedCrossRefGoogle Scholar
  6. 6.
    Morgan TM, Lange PH, Vessella RL (2007) Detection and characterization of circulating and disseminated prostate cancer cells. Front Biosci 12:3000–3009PubMedCrossRefGoogle Scholar
  7. 7.
    Zheng S et al (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162(2):154–161PubMedCrossRefGoogle Scholar
  8. 8.
    Miller MC, Doyle GV, Terstappen L (2010) Significance of circulating tumor cells detected by the Cell Search system in patients with metastatic breast colorectal and prostate cancer. J Oncol 2010:617421PubMedGoogle Scholar
  9. 9.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373PubMedCrossRefGoogle Scholar
  10. 10.
    Tüdos AJ, Besselink GAJ, Schasfoort RBM (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab on a Chip 1(2):83–95PubMedCrossRefGoogle Scholar
  11. 11.
    Bhagat AAS et al (2010) Microfluidics for cell separation. Med Biol Eng Comput 48(10):999–1014PubMedCrossRefGoogle Scholar
  12. 12.
    Vona G et al (2000) Isolation by size of epithelial tumor cells—A new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156(1):57–63PubMedCrossRefGoogle Scholar
  13. 13.
    Hosokawa M et al (2010) Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal Chem 82(15):6629–6635PubMedCrossRefGoogle Scholar
  14. 14.
    Zabaglo L et al (2003) Cell filtration-laser scanning cytometry for the characterisation of circulating breast cancer cells. Cytometry Part A 55A(2):102–108CrossRefGoogle Scholar
  15. 15.
    Mohamed H et al (2009) isolation of tumor cells using size and deformation. J Chromatogr A 1216(47):8289–8295PubMedCrossRefGoogle Scholar
  16. 16.
    Tan SJ et al (2009) Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices 11(4):883–892PubMedCrossRefGoogle Scholar
  17. 17.
    Marrinucci D et al (2007) Case study of the morphologic variation of circulating tumor cells. Hum Pathol 38(3):514–519PubMedCrossRefGoogle Scholar
  18. 18.
    Tan SJ et al (2010) Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients. Biosensors and Bioelectronics 26(4):1701–1705PubMedCrossRefGoogle Scholar
  19. 19.
    Bhagat AAS et al (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab on a Chip 11(11):1870–1878PubMedCrossRefGoogle Scholar
  20. 20.
    Sim TS et al (2011) Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels. Lab on a Chip 11(1):93–99PubMedCrossRefGoogle Scholar
  21. 21.
    Kuntaegowdanahalli SS et al (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab on a Chip 9(20):2973–2980PubMedCrossRefGoogle Scholar
  22. 22.
    Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20:101702CrossRefGoogle Scholar
  23. 23.
    Fu AY et al (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17(11):1109–1111PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang ZL et al (2005) In situ bio-functionalization and cell adhesion in microfluidic devices. Microelectron Eng 78–79:556–562CrossRefGoogle Scholar
  25. 25.
    Bernard A, Michel B, Delamarche E (2001) Micromosaic immunoassays. Anal Chem 73(1):8–12PubMedCrossRefGoogle Scholar
  26. 26.
    Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239PubMedCrossRefGoogle Scholar
  27. 27.
    Stott SL et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci 107(43):18392PubMedCrossRefGoogle Scholar
  28. 28.
    Gleghorn JP et al (2010) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab on a Chip 10(1):27–29PubMedCrossRefGoogle Scholar
  29. 29.
    Saliba AE et al (2010) Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci 107(33):14524PubMedCrossRefGoogle Scholar
  30. 30.
    Sieuwerts AM et al (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101(1):61–66PubMedGoogle Scholar
  31. 31.
    Xu Y et al (2009) Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal Chem 81(17):7436–7442PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Clearbridge BioMedics Pte LtdSingaporeSingapore
  2. 2.Department of BioengineeringNational University of SingaporeSingaporeSingapore
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.Mechanobiology InstituteSingaporeSingapore

Personalised recommendations