Skip to main content

The Algorithm of Multiple Relatively Robust Representations for Multi-core Processors

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7133))

Included in the following conference series:

  • 1398 Accesses

Abstract

The algorithm of Multiple Relatively Robust Representations (MRRR or MR3) computes k eigenvalues and eigenvectors of a symmetric tridiagonal matrix in O(nk) arithmetic operations. Large problems can be effectively tackled with existing distributed-memory parallel implementations of MRRR; small and medium size problems can instead make use of LAPACK’s routine xSTEMR. However, xSTEMR is optimized for single-core CPUs, and does not take advantage of today’s multi-core and future many-core architectures. In this paper we discuss some of the issues and trade-offs arising in the design of MR3–SMP, an algorithm for multi-core CPUs and SMP systems. Experiments on application matrices indicate that MR3–SMP is both faster and obtains better speedups than all the tridiagonal eigensolvers included in LAPACK and Intel’s Math Kernel Library (MKL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilkinson, J.: The Calculation of the Eigenvectors of Codiagonal Matrices. Comp. J. 1(2), 90–96 (1958)

    MATH  Google Scholar 

  2. Francis, J.: The QR Transform - A Unitary Analogue to the LR Transformation, Part I and II. The Comp. J. 4 (1961/1962)

    Google Scholar 

  3. Kublanovskaya, V.: On some Algorithms for the Solution of the Complete Eigenvalue Problem. Zh. Vych. Mat. 1, 555–572 (1961)

    Google Scholar 

  4. Cuppen, J.: A Divide and Conquer Method for the Symmetric Tridiagonal Eigenproblem. Numer. Math. 36, 177–195 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gu, M., Eisenstat, S.C.: A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem. SIAM J. Matrix Anal. Appl. 16(1), 172–191 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dhillon, I., Parlett, B.: Multiple Representations to Compute Orthogonal Eigenvectors of Symmetric Tridiagonal Matrices. Linear Algebra Appl. 387, 1–28 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anderson, E., Bai, Z., Bishof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM (1999)

    Google Scholar 

  8. Demmel, J., Marques, O., Parlett, B., Vömel, C.: Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers. SIAM J. Sci. Comp. 30, 1508–1526 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Dongarra, J., Du Cruz, J., Duff, I., Hammarling, S.: A Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Software 16, 1–17 (1990)

    Article  MATH  Google Scholar 

  10. Demmel, J., Dhillon, I., Ren, H.: On the Correctness of some Bisection-like Parallel Eigenvalue Algorithms in Floating Point Arithmetic. Electron. Trans. Numer. Anal. 3, 116–149 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Parlett, B., Dhillon, I.: Relatively Robust Representations of Symmetric Tridiagonals. Linear Algebra Appl. 309, 121–151 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dhillon, I., Parlett, B.: Orthogonal Eigenvectors and Relative Gaps. SIAM J. Matrix Anal. Appl. 25, 858–899 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Parlett, B., Marques, O.: An Implementation of the DQDS Algorithm (Positive Case). Linear Algebra Appl. 309, 217–259 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Parlett, B.: The Symmetric Eigenvalue Problem. Prentice-Hall (1980)

    Google Scholar 

  15. Bientinesi, P., Dhillon, I., van de Geijn, R.: A Parallel Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations. SIAM J. Sci. Comp. 21, 43–66 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Vömel, C.: ScaLAPACK’s MRRR Algorithm. ACM Trans. on Math. Software  37(1), 1:1–1:35 (2010)

    Article  MathSciNet  Google Scholar 

  17. Dhillon, I., Parlett, B., Vömel, C.: The Design and Implementation of the MRRR Algorithm. ACM Trans. on Mathem. Software 32, 533–560 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kristján Jónasson

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petschow, M., Bientinesi, P. (2012). The Algorithm of Multiple Relatively Robust Representations for Multi-core Processors. In: Jónasson, K. (eds) Applied Parallel and Scientific Computing. PARA 2010. Lecture Notes in Computer Science, vol 7133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28151-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28151-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28150-1

  • Online ISBN: 978-3-642-28151-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics