Transcranial Doppler (TCD)

  • Peter Reinstrup
  • Jan Frennström
  • Bertil Romner


By using a 1–2-MHz pulsed Transcranial Doppler (TCD), it is possible to penetrate the skull bone at special sites (windows) and register the flow velocity (FV) in the insonated artery at well-defined depts. In this way, the FV can be registered in the central arteries as well as in some of the veins. A normal FV in an artery normally indicates an adequate circulation to the territory it supplies. High and low FV does not necessarily have correlations to the CBF since the diameter of the measured vessel is unknown. If the FV is high, a differentiation between hyperaemia and vasospasm can be obtained by performing a Lindegaard Index (LI) which is the correlation between the FV in the middle cerebral artery and the internal carotid artery.


Flow Velocity Cerebral Blood Flow Internal Carotid Artery Middle Cerebral Artery Basilar Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774PubMedCrossRefGoogle Scholar
  2. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52PubMedCrossRefGoogle Scholar
  3. Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62:45–51PubMedCrossRefGoogle Scholar
  4. Bishop CC, Powell S, Rutt D, Browse NL (1986) Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke 17:913–915PubMedCrossRefGoogle Scholar
  5. Bouma GJ, Muizelaar JP (1992) Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma 9(Suppl 1):S333–S348PubMedGoogle Scholar
  6. Brouwers PJAM, Vries EM, Musbach M, Wieneke GH, Van Huffelen AC (1990) Transcranial pulsed doppler measurements of blood flow velocity in the middle cerebral artery: reference values at rest and during hyperventilation in healthy children and adolescents in relation to age and sex. Ultrasound Med Biol 16(1):1–8PubMedCrossRefGoogle Scholar
  7. Clark JM, Skolnick BE, Gelfand R, Farber RE, Stierheim M, Stevens WC, Beck G Jr, Lambertsen CJ (1996) Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest. J Cereb Blood Flow Metab 16:1255–1262PubMedCrossRefGoogle Scholar
  8. Cold GE, Jensen FT, Malmros R (1977) The effects of pACO2 reduction on regional cerebral blood flow in the acute phase of brain injury. Acta Anaesthesiol Scand 21:359–367PubMedCrossRefGoogle Scholar
  9. Czosnyka M, Richards HK, Whitehouse HE, Pickard JD (1996) Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg 84:79–84PubMedCrossRefGoogle Scholar
  10. Figaji AA, Zwane E, Fieggen AG, Siesjo P, Peter JC (2009) Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol 72:389–394PubMedCrossRefGoogle Scholar
  11. Giller CA (1991) A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir (Wien) 108:7–14CrossRefGoogle Scholar
  12. Giller CA, Hatab MR, Giller AM (1998) Estimation of vessel flow and diameter during cerebral vasospasm using transcranial Doppler indices. Neurosurgery 42:1076–1081PubMedCrossRefGoogle Scholar
  13. Goh D, Minns RA (1995) Intracranial pressure and cerebral arterial flow velocity indices in childhood hydrocephalus: current review. Childs Nerv Syst 11:392–396PubMedCrossRefGoogle Scholar
  14. Govender PV, Nadvi SS, Madaree A (1999) The value of transcranial Doppler ultrasonography in craniosynostosis. J Craniofac Surg 10:260–263PubMedCrossRefGoogle Scholar
  15. Hanlo PW, Gooskens RH, Nijhuis IJ, Faber JA, Peters RJ, van Huffelen AC, Tulleken CA, Willemse J (1995) Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus. A study with review of the literature. Childs Nerv Syst 11:595–603PubMedCrossRefGoogle Scholar
  16. Inoue Y, Shiozaki T, Tasaki O, Hayakata T, Ikegawa H, Yoshiya K, Fujinaka T, Tanaka H, Shimazu T, Sugimoto H (2005) Changes in cerebral blood flow from the acute to the chronic phase of severe head injury. J Neurotrauma 22:1411–1418PubMedCrossRefGoogle Scholar
  17. Jünger EC, Newell DW, Grant GA, Avellino AM, Ghatan S, Douville CM, Lam AM, Aaslid R, Winn HR (1997) Cerebral autoregulation following minor head injury. J Neurosurg 86:425–432PubMedCrossRefGoogle Scholar
  18. Krejza J, Szydlik P, Liebeskind DS, Kochanowicz J, Bronov O, Mariak Z, Melhem ER (2005) Age and sex variability and normal reference values for the V(MCA)/V(ICA) index. AJNR Am J Neuroradiol 26:730–735PubMedGoogle Scholar
  19. Langfitt TW, Weinstein JD, Kassell NF (1964) Cerebral vasomotor paralysis as a cause of brain swelling. Trans Am Neurol Assoc 89:214–215PubMedGoogle Scholar
  20. Larsen FS, Olsen KS, Hansen BA, Paulson OB, Knudsen GM (1994) Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke 25:1985–1988PubMedCrossRefGoogle Scholar
  21. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P (1988) Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien) 42:81–84CrossRefGoogle Scholar
  22. Mahony PJ, Panerai RB, Deverson ST, Hayes PD, Evans DH (2000) Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation. Stroke 31:476–480PubMedCrossRefGoogle Scholar
  23. Markwalder TM, Grolimund P, Seiler RW, Roth F, Aaslid R (1984) Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure–a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab 4:368–372PubMedCrossRefGoogle Scholar
  24. Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP (1997) Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 87:9–19PubMedCrossRefGoogle Scholar
  25. Nadvi SS, Du Trevou MD, Van Dellen JR, Gouws E (1994) The use of transcranial Doppler ultrasonography as a method of assessing intracranial pressure in hydrocephalic children. Br J Neurosurg 8:573–577PubMedCrossRefGoogle Scholar
  26. Nagai H, Moritake K, Takaya M (1997) Correlation between transcranial Doppler ultrasonography and regional cerebral blood flow in experimental intracranial hypertension. Stroke 28:603–637PubMedCrossRefGoogle Scholar
  27. Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg 61:241–253PubMedCrossRefGoogle Scholar
  28. Petty GW, Mohr JP, Pedley TA, Tatemichi TK, Lennihan L, Duterte DI, Sacco RL (1990) The role of transcranial Doppler in confirming brain death: sensitivity, specificity, and suggestions for performance and interpretation. Neurology 40:300–303PubMedCrossRefGoogle Scholar
  29. Poon WS, Ng SC, Chan MT, Lam JM, Lam WW (2005) Cerebral blood flow (CBF)-directed management of ventilated head-injured patients. Acta Neurochir Suppl. 95:9–11PubMedCrossRefGoogle Scholar
  30. Reinstrup P, Ryding E, Asgeirsson B, Hesselgard K, Unden J, Romner B (2011) Cerebral blood flow (CBF) and transcranial doppler sonography (TCD) measurements of cerebraovascular CO2-reactivity in patients with acute severe head injury. J Cereb Blood Flow MetabGoogle Scholar
  31. Romner B, Brandt L, Berntman L, Algotsson L, Ljunggren B, Messeter K (1991) Simultaneous transcranial Doppler sonography and cerebral blood flow measurements of cerebrovascular CO2-reactivity in patients with aneurysmal subarachnoid haemorrhage. Br J Neurosurg 5:31–37PubMedCrossRefGoogle Scholar
  32. Schalén W, Messeter K, Nordström CH (1991) Cerebral vasoreactivity and the prediction of outcome in severe traumatic brain lesions. Acta Anaesthesiol Scand 35:113–122PubMedCrossRefGoogle Scholar
  33. Sorrentino E, Budohoski KP, Kasprowicz M, Smielewski P, Matta B, Pickard JD, Czosnyka M (2011) Critical thresholds for transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care 14:188–193PubMedCrossRefGoogle Scholar
  34. Soustiel JF, Shik V (2004) Posttraumatic basilar artery vasospasm. Surg Neurol 62:201–206PubMedCrossRefGoogle Scholar
  35. Soustiel JF, Shik V, Shreiber R, Tavor Y, Goldsher D (2002) Basilar vasospasm diagnosis: investigation of a modified “Lindegaard Index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke 33:72–77PubMedCrossRefGoogle Scholar
  36. Zweifel C, Czosnyka M, Lavinio A, Castellani G, Kim DJ, Carrera E, Pickard JD, Kirkpatrick PJ, Smielewski P (2010) A comparison study of cerebral autoregulation assessed with transcranial Doppler and cortical laser Doppler flowmetry. Neurol Res 32:425–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter Reinstrup
    • 1
  • Jan Frennström
    • 2
  • Bertil Romner
    • 3
  1. 1.Department of Intensive and Perioperative CareSkanes University HospitalLundSweden
  2. 2.Department of NeurosurgerySkanes University HospitalLundSweden
  3. 3.Department of Neurosurgery 2092RigshospitaletCopenhagenDenmark

Personalised recommendations