Skip to main content

How Do Neural Systems Use Probabilistic Inference That Is Context-Sensitive to Create and Preserve Organized Complexity?

  • Chapter
Integral Biomathics

Abstract

This paper claims that biological systems will more effectively create organized complexity if they use probabilistic inference that is context-sensitive. It argues that neural systems combine local reliability with flexible, holistic, context-sensitivity, and a theory, Coherent Infomax, showing, in principle, how this can be done is outlined. Ways in which that theory needs further development are noted, and its relation to Friston’s theory of free energy reduction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Douglas, R.J., Martin, K.A.C.: Mapping the matrix: The ways of neocortex. Neuron 56, 226–238 (2007)

    Article  Google Scholar 

  • Engel, A.K., et al.: Coordination in behavior and cognition. In: Dynamic Coordination in the Brain: from Neurons to Mind. Strüngmann Forum Report, vol. 5, pp. 1–24. MIT Press, Cambridge (2010)

    Google Scholar 

  • Engel, C., Singer, W.: Better than Conscious? Strüngmann forum report, vol. 1. MIT Press, Cambridge (2008)

    Google Scholar 

  • Friston, K.J.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)

    Article  Google Scholar 

  • Jaynes, E.T.: Probability Theory: The Logic of Science. Oxford University Press (1998)

    Google Scholar 

  • Kay, J., Floreano, D., Phillips, W.A.: Contextually guided unsupervised learning using local multivariate binary processors. Neural Networks 11, 117–140 (1998)

    Article  Google Scholar 

  • Kay, J., Phillips, W.A.: Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Computation 9, 895–910 (1997)

    Article  Google Scholar 

  • Kay, J., Phillips, W.A.: Coherent infomax as a computational goal for neural systems. Bull. Math. Biology (2010), doi:10.1007/s11583-010-9564-x

    Google Scholar 

  • Körding, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004)

    Article  Google Scholar 

  • Phillips, W.A., Kay, J., Smyth, D.: The discovery of structure by multi-stream networks of local processors with contextual guidance. Network: Computation in Neural Systems 6, 225–246 (1995)

    Article  MATH  Google Scholar 

  • Phillips, W.A., Silverstein, S.M.: Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–138 (2003)

    Google Scholar 

  • Phillips, W.A., Singer, W.: In search of common foundations for cortical computation. Behav. Brain Sci. 20, 657–722 (1997)

    Article  Google Scholar 

  • Phillips, W.A., von der Malsburg, C., Singer, W.: Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5, pp. 1–24. MIT Press, Cambridge (2010)

    Google Scholar 

  • Schrödinger, E.: What is Life? Cambridge University Press (1944)

    Google Scholar 

  • Silver, R.A.: Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489 (2010)

    Article  Google Scholar 

  • Sporns, O.: Complexity. Scholarpedia 2(10), 1623 (2007)

    Article  Google Scholar 

  • Spratling, M.W.: Predictive-coding as a model of biased competition in visual attention. Vis. Res. 48, 1391–1408 (2008)

    Article  Google Scholar 

  • Tiesinga, P.J., Fellous, J.M., Sejnowski, T.J.: Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 9, 97–109 (2008)

    Article  Google Scholar 

  • von der Malsburg, C., Phillips, W.A., Singer, W. (eds.): Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5. MIT Press, Cambridge (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Phillips, W.A. (2012). How Do Neural Systems Use Probabilistic Inference That Is Context-Sensitive to Create and Preserve Organized Complexity?. In: Simeonov, P., Smith, L., Ehresmann, A. (eds) Integral Biomathics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28111-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28111-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28110-5

  • Online ISBN: 978-3-642-28111-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics