Skip to main content

How Do Neural Systems Use Probabilistic Inference That Is Context-Sensitive to Create and Preserve Organized Complexity?

  • Chapter

Abstract

This paper claims that biological systems will more effectively create organized complexity if they use probabilistic inference that is context-sensitive. It argues that neural systems combine local reliability with flexible, holistic, context-sensitivity, and a theory, Coherent Infomax, showing, in principle, how this can be done is outlined. Ways in which that theory needs further development are noted, and its relation to Friston’s theory of free energy reduction is discussed.

Keywords

  • self-organization
  • complexity
  • probabilistic inference
  • induction
  • neural systems
  • Coherent Infomax
  • context-sensitivity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-28111-2_7
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-28111-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Douglas, R.J., Martin, K.A.C.: Mapping the matrix: The ways of neocortex. Neuron 56, 226–238 (2007)

    CrossRef  Google Scholar 

  • Engel, A.K., et al.: Coordination in behavior and cognition. In: Dynamic Coordination in the Brain: from Neurons to Mind. Strüngmann Forum Report, vol. 5, pp. 1–24. MIT Press, Cambridge (2010)

    Google Scholar 

  • Engel, C., Singer, W.: Better than Conscious? Strüngmann forum report, vol. 1. MIT Press, Cambridge (2008)

    Google Scholar 

  • Friston, K.J.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)

    CrossRef  Google Scholar 

  • Jaynes, E.T.: Probability Theory: The Logic of Science. Oxford University Press (1998)

    Google Scholar 

  • Kay, J., Floreano, D., Phillips, W.A.: Contextually guided unsupervised learning using local multivariate binary processors. Neural Networks 11, 117–140 (1998)

    CrossRef  Google Scholar 

  • Kay, J., Phillips, W.A.: Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Computation 9, 895–910 (1997)

    CrossRef  Google Scholar 

  • Kay, J., Phillips, W.A.: Coherent infomax as a computational goal for neural systems. Bull. Math. Biology (2010), doi:10.1007/s11583-010-9564-x

    Google Scholar 

  • Körding, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004)

    CrossRef  Google Scholar 

  • Phillips, W.A., Kay, J., Smyth, D.: The discovery of structure by multi-stream networks of local processors with contextual guidance. Network: Computation in Neural Systems 6, 225–246 (1995)

    CrossRef  MATH  Google Scholar 

  • Phillips, W.A., Silverstein, S.M.: Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–138 (2003)

    Google Scholar 

  • Phillips, W.A., Singer, W.: In search of common foundations for cortical computation. Behav. Brain Sci. 20, 657–722 (1997)

    CrossRef  Google Scholar 

  • Phillips, W.A., von der Malsburg, C., Singer, W.: Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5, pp. 1–24. MIT Press, Cambridge (2010)

    Google Scholar 

  • Schrödinger, E.: What is Life? Cambridge University Press (1944)

    Google Scholar 

  • Silver, R.A.: Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489 (2010)

    CrossRef  Google Scholar 

  • Sporns, O.: Complexity. Scholarpedia 2(10), 1623 (2007)

    CrossRef  Google Scholar 

  • Spratling, M.W.: Predictive-coding as a model of biased competition in visual attention. Vis. Res. 48, 1391–1408 (2008)

    CrossRef  Google Scholar 

  • Tiesinga, P.J., Fellous, J.M., Sejnowski, T.J.: Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 9, 97–109 (2008)

    CrossRef  Google Scholar 

  • von der Malsburg, C., Phillips, W.A., Singer, W. (eds.): Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5. MIT Press, Cambridge (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Phillips, W.A. (2012). How Do Neural Systems Use Probabilistic Inference That Is Context-Sensitive to Create and Preserve Organized Complexity?. In: Simeonov, P., Smith, L., Ehresmann, A. (eds) Integral Biomathics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28111-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28111-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28110-5

  • Online ISBN: 978-3-642-28111-2

  • eBook Packages: EngineeringEngineering (R0)