Abstract
This paper claims that biological systems will more effectively create organized complexity if they use probabilistic inference that is context-sensitive. It argues that neural systems combine local reliability with flexible, holistic, context-sensitivity, and a theory, Coherent Infomax, showing, in principle, how this can be done is outlined. Ways in which that theory needs further development are noted, and its relation to Friston’s theory of free energy reduction is discussed.
Keywords
- self-organization
- complexity
- probabilistic inference
- induction
- neural systems
- Coherent Infomax
- context-sensitivity
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Douglas, R.J., Martin, K.A.C.: Mapping the matrix: The ways of neocortex. Neuron 56, 226–238 (2007)
Engel, A.K., et al.: Coordination in behavior and cognition. In: Dynamic Coordination in the Brain: from Neurons to Mind. Strüngmann Forum Report, vol. 5, pp. 1–24. MIT Press, Cambridge (2010)
Engel, C., Singer, W.: Better than Conscious? Strüngmann forum report, vol. 1. MIT Press, Cambridge (2008)
Friston, K.J.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)
Jaynes, E.T.: Probability Theory: The Logic of Science. Oxford University Press (1998)
Kay, J., Floreano, D., Phillips, W.A.: Contextually guided unsupervised learning using local multivariate binary processors. Neural Networks 11, 117–140 (1998)
Kay, J., Phillips, W.A.: Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Computation 9, 895–910 (1997)
Kay, J., Phillips, W.A.: Coherent infomax as a computational goal for neural systems. Bull. Math. Biology (2010), doi:10.1007/s11583-010-9564-x
Körding, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004)
Phillips, W.A., Kay, J., Smyth, D.: The discovery of structure by multi-stream networks of local processors with contextual guidance. Network: Computation in Neural Systems 6, 225–246 (1995)
Phillips, W.A., Silverstein, S.M.: Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–138 (2003)
Phillips, W.A., Singer, W.: In search of common foundations for cortical computation. Behav. Brain Sci. 20, 657–722 (1997)
Phillips, W.A., von der Malsburg, C., Singer, W.: Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5, pp. 1–24. MIT Press, Cambridge (2010)
Schrödinger, E.: What is Life? Cambridge University Press (1944)
Silver, R.A.: Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489 (2010)
Sporns, O.: Complexity. Scholarpedia 2(10), 1623 (2007)
Spratling, M.W.: Predictive-coding as a model of biased competition in visual attention. Vis. Res. 48, 1391–1408 (2008)
Tiesinga, P.J., Fellous, J.M., Sejnowski, T.J.: Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 9, 97–109 (2008)
von der Malsburg, C., Phillips, W.A., Singer, W. (eds.): Dynamic coordination in the brain: from neurons to mind. Strüngmann forum report, vol. 5. MIT Press, Cambridge (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag GmbH Berlin Heidelberg
About this chapter
Cite this chapter
Phillips, W.A. (2012). How Do Neural Systems Use Probabilistic Inference That Is Context-Sensitive to Create and Preserve Organized Complexity?. In: Simeonov, P., Smith, L., Ehresmann, A. (eds) Integral Biomathics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28111-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-28111-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28110-5
Online ISBN: 978-3-642-28111-2
eBook Packages: EngineeringEngineering (R0)