Skip to main content

Overlap among Dendrites in Neuronal Networks Is a Designed Entity onto Which Functional Topology Is Coded

  • Chapter
  • 777 Accesses

Abstract

Information processing in the brain is performed by propagating data through an array of neuronal networks, each having unique structural and topological architectures. However, the mechanisms that specify these architectures are not well understood. We found that neuronal networks in vitro determine the pattern and strength of their connectivity by designing the way dendrites overlap. The branches of neighboring dendrites converge in a collective and ordered fashion, leading to a network configuration that enables axons to innervate multiple and remote dendrites using short wiring lengths. In addition, the convergence sites are associated with synaptic clusters of higher density and strength than found elsewhere, leading to patchy distribution of synaptic strength in the network. Thus, controlled design of the overlap among dendrites patterns and strengthens neuronal connectivity in neuronal networks.

Keywords

  • neuronal networks
  • dendro-dendritic contact
  • synaptic strength

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-28111-2_2
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-28111-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Segev, I., London, M.: Untangling dendrites with quantitative models. Science 290(5492), 744–750 (2000)

    CrossRef  Google Scholar 

  2. Spruston, N.: Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9(3), 206–221 (2008)

    CrossRef  MathSciNet  Google Scholar 

  3. Portera-Cailliau, C., Pan, D.T., Yuste, R.: Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci. 23(18), 7129–7142 (2003)

    Google Scholar 

  4. Williams, D.W., Truman, J.W.: Mechanisms of dendritic elaboration of sensory neurons in Drosophila: insights from in vivo time lapse. J. Neurosci. 24, 1541–1550 (2004)

    CrossRef  Google Scholar 

  5. Scott, E.K., Luo, L.: How do dendrites take their shape? Nat. Neurosci 4, 359–365 (2001)

    CrossRef  Google Scholar 

  6. Rajan, I., Cline, H.T.: Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998)

    Google Scholar 

  7. Redmond, I., Kashani, A.H., Ghosh, A.: Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34, 999–1010 (2002)

    CrossRef  Google Scholar 

  8. Komiyama, T., Luo, L.: Development of wiring specificity in the olfactory system. Curr. Opin. Neurobiol. 16(1), 67–73 (2006)

    CrossRef  Google Scholar 

  9. Zhu, H., Luo, L.: Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 42, 63–78 (2004)

    CrossRef  Google Scholar 

  10. Cove, J., Blinder, P., Abi-Jaoude, E., Lafrenière-Roula, M., Devroye, L., Baranes, D.: Activ-ity-Regulated Neurite Growth toward Neurite-Neurite Contact Sites results in Synaptic Clustering and Strengthening. Cereb. Cortex 16, 83–92 (2006)

    CrossRef  Google Scholar 

  11. Cove, J., Blinder, P., Baranes, D.: Contact among non-sister dendritic branches at bifurcations shape neighboring dendrites and pattern their synaptic inputs. Brain Research 1251, 30–41 (2009)

    CrossRef  Google Scholar 

  12. Blinder, P., Cove, J., Foox, M., Baranes, D.: Convergence among non-sister dendritic branches: An activity-controlled mean to strengthen network connectivity. PLoS One 3(11), e3782 (2008)

    Google Scholar 

  13. Shefi, O., Golding, I., Segev, R., Ben-Yakov, E., Ayali, A.: Morphological characterization of in vitro neuronal networks. Physical Rev. E, 021905 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Baranes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Baranes, D. (2012). Overlap among Dendrites in Neuronal Networks Is a Designed Entity onto Which Functional Topology Is Coded. In: Simeonov, P., Smith, L., Ehresmann, A. (eds) Integral Biomathics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28111-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28111-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28110-5

  • Online ISBN: 978-3-642-28111-2

  • eBook Packages: EngineeringEngineering (R0)