Skip to main content

A Proposal for Combination of Category Theory and λ–Calculus in Formalization of Autopoiesis

  • Chapter
  • 818 Accesses

Abstract

There have recently been some computational or mathematical formalization studies on closedness of living systems such as autopoiesis and (M,R) systems. In particular, some have mentioned relationships between cartesian closed categories and λ–calculus. Following this line, the paper proposes a framework to formalize autopoiesis by combining category theory and λ–calculus more strictly, by introducing an equivalence between the category of cartesian closed categories and that of λ–calculi while providing a formalization of the distinction between organization and structure in autopoietic systems.

Keywords

  • Autopoiesis
  • category theory
  • λ-calculus
  • operational closure
  • Cartesian closed category
  • organization
  • structure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-28111-2_12
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-28111-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourgine, P., Stewart, J.: Autopoiesis and cognition. Artificial Life 10(3), 327–346 (2004)

    CrossRef  Google Scholar 

  2. Cárdenas, M.L., Letelier, J.C., Gutierrez, C., Cornish-Bowden, A., Soto-Andrade, J.: Closure to efficient causation, computability and artificial life. Journal of Theoretical Biology 263, 79–92 (2010)

    CrossRef  Google Scholar 

  3. Chemero, A., Turvey, M.T.: Complexity and ”closure to efficient cause”. In: Proc. AlifeX: Workshiop on Artificial Autonomy, pp. 13–19 (2006)

    Google Scholar 

  4. Egbert, M.D., Di Paolo, E.: Integrating autopoiesis and behavior: An exploration in computational chemo–ethology. Adaptive Behavior 17(5), 387–401 (2009)

    CrossRef  Google Scholar 

  5. Kampis, G.: Self–Modifying Systems in Biology and Cognitive Science: A New Framework for Synamics. Pergamon Press (1991)

    Google Scholar 

  6. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cambridge University Press (1986)

    Google Scholar 

  7. Letelier, J.C., Soto-Andrade, J., Abarzúa, F.G., Cornish-Bowden, A., Cárdenas, M.L.: Organizational invariance and metabolic closure: Analysis in terms of (M,R) systems. Journal of Theoretical Biology 238, 949–961 (2006)

    CrossRef  MathSciNet  Google Scholar 

  8. Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living. D. Reidel Publishing (1980)

    Google Scholar 

  9. Maturana, H.R., Varela, F.J.: The Tree of Knowledge. Shambala Publications (1987)

    Google Scholar 

  10. McMullin, B.: Thirty years of computational autopoiesis. Artificial Life 10(3), 277–296 (2004)

    CrossRef  Google Scholar 

  11. Mossio, M., Longo, G., Stewart, J.: A computable expression of closure to efficient causation. Journal of Theoretical Biology 257(3), 489–498 (2009)

    CrossRef  Google Scholar 

  12. Nomura, T.: Category theoretical formalization of autopoieis from perspective of distinction between organization and structure. In: Proc. Seventh German Workshop on Artificial Life, pp. 31–38 (2006)

    Google Scholar 

  13. Nomura, T.: Category Theoretical Distinction between Autopoiesis and (M,R) Systems. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 465–474. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  14. Rosen, R.: Life Itself. Columbia University Press (1991)

    Google Scholar 

  15. Soto-Andrade, J., Varela, F.J.: Self–reference and fixed points: A discussion and an extension of Lawvere’s theorem. Acta Applicandae Mathematicae 2, 1–19 (1984)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Nomura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Nomura, T. (2012). A Proposal for Combination of Category Theory and λ–Calculus in Formalization of Autopoiesis. In: Simeonov, P., Smith, L., Ehresmann, A. (eds) Integral Biomathics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28111-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28111-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28110-5

  • Online ISBN: 978-3-642-28111-2

  • eBook Packages: EngineeringEngineering (R0)