Skip to main content

Invariant Manifolds and Markov Partitions

  • Chapter
  • First Online:
Book cover Ergodic Theory, Hyperbolic Dynamics and Dimension Theory

Part of the book series: Universitext ((UTX))

  • 2566 Accesses

Abstract

We continue in this chapter our study of hyperbolic dynamics, starting with the construction of stable and unstable manifolds for any point of a hyperbolic set. The optimal regularity of the invariant manifolds is obtained using invariant cone families. In particular, we use the stable and unstable manifolds to define a product structure on any locally maximal hyperbolic set. In addition, we construct Markov partitions with a substantial elaboration of the corresponding construction for repellers. The shadowing property is also presented and is used as a tool in the construction of the Markov partitions. Moreover, we describe Hopf’s argument to establish the ergodicity of Lebesgue measure for a hyperbolic toral automorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Adler, A. Konheim, M. McAndrew, Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)

    Google Scholar 

  2. R. Adler, B. Weiss, Similarity of automorphisms of the torus. Mem. Am. Math. Soc. 98 (1970)

    Google Scholar 

  3. D. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature. Dokl. Akad. Nauk SSSR 145, 707–709 (1962)

    Google Scholar 

  4. D. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature. Proc. Steklov Inst. Math. 90, 1–235 (1967)

    Google Scholar 

  5. D. Anosov, Ya. Sinai, Certain smooth ergodic systems. Russ. Math. Surv. 22, 103–167 (1967)

    Google Scholar 

  6. M. Artin, B. Mazur, On periodic points. Ann. Math. (2) 81, 82–99 (1965)

    Google Scholar 

  7. L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergod. Theor. Dyn. Syst. 16, 871–927 (1996)

    Google Scholar 

  8. L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics. Progress in Mathematics, vol. 272 (Birkhäuser, Basel, 2008)

    Google Scholar 

  9. L. Barreira, Thermodynamic Formalism and Applications to Dimension Theory. Progress in Mathematics, vol. 294 (Birkhäuser, Basel, 2011)

    Google Scholar 

  10. L. Barreira, Ya. Pesin, Lyapunov Exponents and Smooth Ergodic Theory. University Lecture Series, vol. 23 (American Mathematical Society, RI, 2002)

    Google Scholar 

  11. L. Barreira, Ya. Pesin, Nonuniform Hyperbolicity. Encyclopedia of Mathematics and Its Applications, vol. 115 (Cambridge University Press, London, 2007)

    Google Scholar 

  12. L. Barreira, Ya. Pesin, J. Schmeling, Dimension and product structure of hyperbolic measures. Ann. Math. (2) 149, 755–783 (1999)

    Google Scholar 

  13. L. Barreira, B. Saussol, Hausdorff dimension of measures via Poincaré recurrence. Comm. Math. Phys. 219, 443–463 (2001)

    Google Scholar 

  14. L. Barreira, J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension. Isr. J. Math. 116, 29–70 (2000)

    Google Scholar 

  15. G. Birkhoff, Proof of the ergodic theorem. Proc. Acad. Sci. USA 17, 656–660 (1931)

    Google Scholar 

  16. M. Boshernitzan, Quantitative recurrence results. Invent. Math. 113, 617–631 (1993)

    Google Scholar 

  17. H. Bothe, The Hausdorff dimension of certain solenoids. Ergod. Theor. Dyn. Syst. 15, 449–474 (1995)

    Google Scholar 

  18. R. Bowen, Markov partitions for Axiom A diffeomorphisms. Am. J. Math. 92, 725–747 (1970)

    Google Scholar 

  19. R. Bowen, Topological entropy and axiom A. In Global Analysis (Proc. Sympos. Pure Math. XIV, Berkeley, 1968) (American Mathematical Society, RI, 1970), pp. 23–41

    Google Scholar 

  20. R. Bowen, Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470 (Springer, Berlin, 1975)

    Google Scholar 

  21. R. Bowen, Hausdorff dimension of quasi-circles. Inst. Hautes Études Sci. Publ. Math. 50, 259–273 (1979)

    Google Scholar 

  22. L. Breiman, The individual ergodic theorem of information theory. Ann. Math. Stat. 28, 809–811 (1957)

    Google Scholar 

  23. M. Brin, G. Stuck, Introduction to Dynamical Systems (Cambridge University Press, London, 2002)

    Google Scholar 

  24. G. Choe, Computational Ergodic Theory. Algorithms and Computation in Mathematics, vol. 13 (Springer, Berlin, 2005)

    Google Scholar 

  25. P. Collet, J. Lebowitz, A. Porzio, The dimension spectrum of some dynamical systems. J. Stat. Phys. 47, 609–644 (1987)

    Google Scholar 

  26. I. Cornfeld, S. Fomin, Ya. Sinai, Ergodic Theory. Grundlehren der mathematischen Wissenchaften, vol. 245 (Springer, Berlin, 1982)

    Google Scholar 

  27. E. Dinaburg, On the relations among various entropy characteristics of dynamical systems. Math. USSR-Izv. 5, 337–378 (1971)

    Google Scholar 

  28. A. Douady, J. Oesterlé, Dimension de Hausdorff des attracteurs. C. R. Acad. Sc. Paris 290, 1135–1138 (1980)

    Google Scholar 

  29. K. Falconer, The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, vol. 85 (Cambridge University Press, London, 1986)

    Google Scholar 

  30. K. Falconer, The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Phil. Soc. 103, 339–350 (1988)

    Google Scholar 

  31. K. Falconer, Dimensions and measures of quasi self-similar sets. Proc. Am. Math. Soc. 106, 543–554 (1989)

    Google Scholar 

  32. K. Falconer, Bounded distortion and dimension for non-conformal repellers. Math. Proc. Camb. Phil. Soc. 115, 315–334 (1994)

    Google Scholar 

  33. K. Falconer, Fractal Geometry. Mathematical Foundations and Applications (Wiley, NY, 2003)

    Google Scholar 

  34. T. Goodman, Relating topological entropy and measure entropy. Bull. Lond. Math. Soc. 3, 176–180 (1971)

    Google Scholar 

  35. T. Goodman, Maximal measures for expansive homeomorphisms. J. Lond. Math. Soc. (2) 5, 439–444 (1972)

    Google Scholar 

  36. L. Goodwyn, Topological entropy bounds measure-theoretic entropy. Proc. Am. Math. Soc. 23, 679–688 (1969)

    Google Scholar 

  37. J. Hadamard, Les surfaces à courbures opposées et leur lignes géodesiques. J. Math. Pure. Appl. 4, 27–73 (1898)

    Google Scholar 

  38. T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, B. Shraiman, Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A (3) 34, 1141–1151 (1986); errata in 34, 1601 (1986)

    Google Scholar 

  39. B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations. Ergod. Theor. Dyn. Syst. 14, 645–666 (1994)

    Google Scholar 

  40. M. Hirsch, C. Pugh, Stable manifolds and hyperbolic sets. In Global Analysis (Proc. Sympos. Pure Math. XIV, Berkeley, 1968) (American Mathematical Society, RI, 1970), pp. 133–163

    Google Scholar 

  41. H. Hu, Box dimensions and topological pressure for some expanding maps. Comm. Math. Phys. 191, 397–407 (1998)

    Google Scholar 

  42. M. Irwin, Smooth Dynamical Systems (Academic Press, NY, 1980)

    Google Scholar 

  43. A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 51, 137–173 (1980)

    Google Scholar 

  44. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications, vol. 54 (Cambridge University Press, London, 1995)

    Google Scholar 

  45. G. Keller, Equilibrium States in Ergodic Theory. London Mathematical Society Student Texts, vol. 42 (Cambridge University Press, London, 1998)

    Google Scholar 

  46. A. Khinchin, On the basic theorems of information theory. Uspehi Mat. Nauk (N.S.) 11, 17–75 (1956)

    Google Scholar 

  47. A. Khinchin, Mathematical Foundations of Information Theory (Dover, NY, 1957)

    Google Scholar 

  48. B. Kitchens, Symbolic Dynamics, One-Sided, Two-Sided and Countable State Markov Shifts. Universitext (Springer, Berlin, 1998)

    Google Scholar 

  49. A. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk SSSR (N.S.) 119, 861–864 (1958)

    Google Scholar 

  50. A. Kolmogorov, Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124, 754–755 (1959)

    Google Scholar 

  51. U. Krengel, Ergodic Theorems (de Gruyter, Berlin, 1985)

    Google Scholar 

  52. N. Kryloff, N. Bogoliouboff, La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire. Ann. Math. (2) 38, 65–113 (1937)

    Google Scholar 

  53. H. Lebesgue, Intégrale, longueur, aire. Ann. Mat. Pura Appl. (3) 7, 231–359 (1902)

    Google Scholar 

  54. F. Ledrappier, L.-S. Young, The metric entropy of diffeomorphisms II. Relations between entropy, exponents and dimension. Ann. Math. (2) 122, 540–574 (1985)

    Google Scholar 

  55. D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding (Cambridge University Press, London, 1995)

    Google Scholar 

  56. A. Lopes, The dimension spectrum of the maximal measure. SIAM J. Math. Anal. 20, 1243–1254 (1989)

    Google Scholar 

  57. R. Mañé, Ergodic Theory and Differentiable Dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 8 (Springer, Berlin, 1987)

    Google Scholar 

  58. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44 (Cambridge University Press, London, 1995)

    Google Scholar 

  59. H. McCluskey, A. Manning, Hausdorff dimension for horseshoes. Ergod. Theor. Dyn. Syst. 3, 251–260 (1983)

    Google Scholar 

  60. B. McMillan, The basic theorems of information theory. Ann. Math. Stat. 24, 196–219 (1953)

    Google Scholar 

  61. M. Misiurewicz, A short proof of the variational principle for a Z  +  N action on a compact space. In International Conference on Dynamical Systems in Mathematical Physics, Rennes, 1975. Astérisque, vol. 40 (Soc. Math. France, Montrouge, 1976), pp. 147–157

    Google Scholar 

  62. P. Moran, Additive functions of intervals and Hausdorff measure. Proc. Camb. Phil. Soc. 42, 15–23 (1946)

    Google Scholar 

  63. M. Morse, A one-to-one representation of geodesics on a surface of negative curvature. Am. J. Math. 43, 33–51 (1921)

    Google Scholar 

  64. M. Morse, G. Hedlund, Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)

    Google Scholar 

  65. Z. Nitecki, Differentiable Dynamics (MIT Press, MA, 1971)

    Google Scholar 

  66. D. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems. Yale Mathematical Monographs, vol. 5 (Yale University Press, CT, 1974)

    Google Scholar 

  67. D. Ornstein, B. Weiss, Entropy and data compression schemes. IEEE Trans. Inform. Theor. 39, 78–83 (1993)

    Google Scholar 

  68. J. Palis, M. Viana, On the continuity of Hausdorff dimension and limit capacity for horseshoes. In Dynamical Systems (Valparaiso, 1986), ed. by R. Bamón, R. Labarca, J. Palis. Lecture Notes in Mathematics, vol. 1331 (Springer, Berlin, 1988), pp. 150–160

    Google Scholar 

  69. W. Parry, Topics in Ergodic Theory (Cambridge University Press, London, 1981)

    Google Scholar 

  70. W. Parry, M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics. Astérisque, vol. 187–188 (Soc. Math. France, Montrouge, 1990)

    Google Scholar 

  71. O. Perron, Die Stabilitätsfrage bei Differentialgleichungen. Math. Z. 32, 703–728 (1930)

    Google Scholar 

  72. Ya. Pesin, Characteristic exponents and smooth ergodic theory. Russ. Math. Surv. 32, 55–114 (1977)

    Google Scholar 

  73. Ya. Pesin, Dimension Theory in Dynamical Systems. Contemporary Views and Applications. Chicago Lectures in Mathematics (Chicago University Press, IL, 1997)

    Google Scholar 

  74. Ya. Pesin, B. Pitskel’, Topological pressure and the variational principle for noncompact sets. Funct. Anal. Appl. 18, 307–318 (1984)

    Google Scholar 

  75. Ya. Pesin, H. Weiss, On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann–Ruelle conjecture. Comm. Math. Phys. 182, 105–153 (1996)

    Google Scholar 

  76. Ya. Pesin, H. Weiss, A multifractal analysis of Gibbs measures for conformal expanding maps and Markov Moran geometric constructions. J. Stat. Phys. 86, 233–275 (1997)

    Google Scholar 

  77. K. Petersen, Ergodic Theory (Cambridge University Press, London, 1983)

    Google Scholar 

  78. H. Poincaré, Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13, 1–270 (1890)

    Google Scholar 

  79. M. Pollicott, M. Yuri, Dynamical Systems and Ergodic Theory. London Mathematical Society Student Texts, vol. 40 (Cambridge University Press, London, 1998)

    Google Scholar 

  80. D. Rand, The singularity spectrum f(α) for cookie-cutters. Ergod. Theor. Dyn. Syst. 9, 527–541 (1989)

    Google Scholar 

  81. C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos. Studies in Advanced Mathematics (CRC Press, FL, 1995)

    Google Scholar 

  82. D. Rudolph, Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces (Oxford University Press, London, 1990)

    Google Scholar 

  83. D. Ruelle, Statistical mechanics on a compact set with ν action satisfying expansiveness and specification. Trans. Am. Math. Soc. 185, 237–251 (1973)

    Google Scholar 

  84. D. Ruelle, Thermodynamic Formalism. Encyclopedia of Mathematics and Its Applications, vol. 5 (Addison-Wesley, MA, 1978)

    Google Scholar 

  85. D. Ruelle, Repellers for real analytic maps. Ergod. Theor. Dyn. Syst. 2, 99–107 (1982)

    Google Scholar 

  86. J. Schmeling, On the completeness of multifractal spectra. Ergod. Theor. Dyn. Syst. 19, 1595–1616 (1999)

    Google Scholar 

  87. C. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  88. M. Shereshevsky, A complement to Young’s theorem on measure dimension: The difference between lower and upper pointwise dimension. Nonlinearity 4, 15–25 (1991)

    Google Scholar 

  89. M. Shub, Global Stability of Dynamical Systems (Springer, Berlin, 1986)

    Google Scholar 

  90. K. Simon, The Hausdorff dimension of the Smale–Williams solenoid with different contraction coefficients. Proc. Am. Math. Soc. 125, 1221–1228 (1997)

    Google Scholar 

  91. K. Simon, B. Solomyak, Hausdorff dimension for horseshoes in 3. Ergod. Theor. Dyn. Syst. 19, 1343–1363 (1999)

    Google Scholar 

  92. D. Simpelaere, Dimension spectrum of axiom A diffeomorphisms. II. Gibbs measures. J. Stat. Phys. 76, 1359–1375 (1994)

    Google Scholar 

  93. Ya. Sinai, On the concept of entropy for a dynamic system. Dokl. Akad. Nauk SSSR 124, 768–771 (1959)

    Google Scholar 

  94. Ya. Sinai, Construction of Markov partitions. Funct. Anal. Appl. 2, 245–253 (1968a)

    Google Scholar 

  95. Ya. Sinai, Markov partitions and C-diffeomorphisms. Funct. Anal. Appl. 2, 61–82 (1968b)

    Google Scholar 

  96. Ya. Sinai, Introduction to Ergodic Theory. Mathematical Notes, vol. 18 (Princeton University Press, NJ, 1976)

    Google Scholar 

  97. Ya. Sinai, Topics in Ergodic Theory. Princeton Mathematical Series, vol. 44 (Princeton University Press, NJ, 1994)

    Google Scholar 

  98. S. Smale, Diffeomorphisms with many periodic points. In Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) (Princeton University Press, NJ, 1965), pp. 63–80

    Google Scholar 

  99. S. Smale, Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Google Scholar 

  100. W. Szlenk, An Introduction to the Theory of Smooth Dynamical Systems (Wiley, NY, 1984)

    Google Scholar 

  101. F. Takens, Limit capacity and Hausdorff dimension of dynamically defined Cantor sets. In Dynamical Systems (Valparaiso, 1986), ed. by R. Bamón, R. Labarca, J. Palis. Lecture Notes in Mathematics, vol. 1331 (Springer, Berlin, 1988), pp. 196–212

    Google Scholar 

  102. P. Walters, A variational principle for the pressure of continuous transformations. Am. J. Math. 97, 937–971 (1976)

    Google Scholar 

  103. P. Walters, An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79 (Springer, Berlin, 1982)

    Google Scholar 

  104. H. Weyl, Über der Gleichverteilung von Zahlen mod Eins. Math. Ann. 77, 313–352 (1916)

    Google Scholar 

  105. L.-S. Young, Dimension, entropy and Lyapunov exponents. Ergod. Theor. Dyn. Syst. 2, 109–124 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barreira, L. (2012). Invariant Manifolds and Markov Partitions. In: Ergodic Theory, Hyperbolic Dynamics and Dimension Theory. Universitext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28090-0_7

Download citation

Publish with us

Policies and ethics