Artificial Intelligence Tools

  • Ramón Quiza
  • Omar López-Armas
  • J. Paulo Davim
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter summarizes the main concepts on artificial intelligence, remarking those tools which are commonly applied to the modeling and optimization of manufacturing processes. Special emphasis has been done on soft computing techniques, because of the wide use that these ones have in this field. Each of the main soft computing techniques (artificial neural networks, fuzzy logic and stochastic optimization) is explained and, examples of applications are given.


Particle Swarm Optimization Membership Function Pareto Front Fuzzy Inference System Radial Basis Function Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. B.A. Attea, A fuzzy multi-objective particle swarm optimization for effective data clustering. Memetic Comp. 2, 305–312 (2010). doi: 10.1007/s12293-010-0047-2 CrossRefGoogle Scholar
  2. L. Behera, S. Kumar, A. Patnaik, On adaptive learning rate that guarantees convergence in feedforward networks. IEEE T Neural Netw. 17, 1116–1125 (2006). doi: 10.1109/TNN.2006.878121 CrossRefGoogle Scholar
  3. T. Bertsimas, D. Tsitsiklis, Simulated annealing. Stat. Sci. 8, 10–15 (1993). doi: 10.1214/ss/1177011077 CrossRefGoogle Scholar
  4. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999)zbMATHGoogle Scholar
  5. M.D. Buhmann, Radial Basis Functions (Cambridge University Press, Cambridge, 2004)Google Scholar
  6. G.A. Carpenter, S. Goldberg, Adaptive Resonance Theory, in Encyclopedia of Machine Learning, ed. by C. Sammut, G.I. Webb (Springer, New York, 2009)Google Scholar
  7. M. Chandrasekaran, M. Muralidhar, C. Murali Krishna, U.S. Dixit, Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int. J. Adv. Manuf. Tech. 46, 445–464 (2010). doi: 10.1007/s00170-009-2104-x CrossRefGoogle Scholar
  8. C.A. Coello, Multiobjective Optimization: Current and Future Challenges, in Advances in Soft Computing: Engineering, Design and Manufacturing, ed. by J. Benitez, O. Cordon, F. Hoffmann, R. Roy (Springer, London, 2003)Google Scholar
  9. M. Dorigo, C. Blum, Ant colony optimization theory: A survey. Lect. Notes Comput. Sci. 344, 243–278 (2005). doi: 10.1016/j.tcs.2005.05.020 MathSciNetzbMATHGoogle Scholar
  10. Flexer A Statistical evaluation of neural network experiments: minimum requeriments and current practices. In: Trappl R (ed.) 13th European Meeting on Cybernetics and Systems Research, Vienna (1996) Google Scholar
  11. R. Fullér, Introduction to neuro-fuzzy systems (Physica-Verlag, Heidelberg, 2000)zbMATHGoogle Scholar
  12. H. Ghaiebi, M. Solimanpur, An ant algorithm for optimization of hole-making operations. Comput. Ind. Eng. 52, 308–319 (2007). doi: 10.1016/j.cie.2007.01.001 CrossRefGoogle Scholar
  13. M.H. Ghaseminezhad, A. Karami, A novel self-organizing map (SOM) neural network for discrete groups of data clustering. Appl. Soft. Comput. 11, 3771–3778 (2011). doi: 10.1016/j.asoc.2011.02.009 CrossRefGoogle Scholar
  14. M.T. Hagan, H.B. Demuth, M. Beale, Neural Network Design (China Machine Press, Beijing, 2002)Google Scholar
  15. R.L. Harvey, Neural Network Principles (Prentice Hall, Englewood Cliffs, 1994)zbMATHGoogle Scholar
  16. L.G. Heins, D.R. Tauirtz, Adaptive Resonance Theory(ART):An Introduction Internal Report 95–35 (Department of Computer Science, Leiden University, Leiden, 1995)Google Scholar
  17. Y.H. Hu, J.-N. Hwang, Handbook of Neural Network Signal Processing (CRC Press, Boca Raton, 2002)Google Scholar
  18. J.S.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system. IEEE T Syst. Man Cyb. 23, 665–685 (1993). doi: 10.1109/21.256541 CrossRefGoogle Scholar
  19. N.K. Kasabov, Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering (MIT Press, Cambridge, 1998)Google Scholar
  20. A. López, C.A. Coello, Multi-objective evolutionary algorithms: a review of the state-of-the-art and some of their applications in chemical engineering, in Multi-Objective Optimization Techniques and Applications in Chemical Engineering, ed. by R.G. Pandu (World Scientific, Singapore, 2009)Google Scholar
  21. F. Marini, J. Zupan, A.L. Magri, Class-modeling using Kohonen artificial neural networks. Anal. Chim. Acta 544, 306–314 (2005). doi: 10.1016/j.aca.2004.12.026 CrossRefGoogle Scholar
  22. A. Noorul Haq, K. Sivakumar, R. Saravanan, K. Karthikeyan, Particle swarm optimization (PSO) algorithm for optimal machining allocation of clutch assembly. Int. J. Adv. Manuf. Tech. 27, 865–869 (2006). doi: 10.1007/s00170-004-2274-5 CrossRefGoogle Scholar
  23. S.P. Po, The application of an ANFIS and grey system method in turning tool-failure detection. Int. J. Adv. Manuf. Tech. 19, 564–572 (2002). doi: 10.1007/s001700200061 CrossRefGoogle Scholar
  24. S. Rajasekaran, G.A. Vijayalakshmi Pal, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis and Applications (Prentice-Hall of India, New Delhi, 2003)Google Scholar
  25. J. Ramík, Soft computing: Overview and Recent Developments in Fuzzy Optimization. University of Ostrava (Czech Republic) (2001),
  26. T.J. Ross, Fuzzy Logic With Engineering Applications (Wiley, West Sussex, 2004)zbMATHGoogle Scholar
  27. R. Rojas, Neural Networks: A Systematic Introduction (Springer, Berlin, 1996)Google Scholar
  28. G. Roussos, B.J.C. Baxter, Rapid evaluation of radia basis functions. J. Comput. Appl. Math. 180, 51–70 (2005). doi: 10.1016/ MathSciNetzbMATHCrossRefGoogle Scholar
  29. R. Saravanan, R.S. Sankar, P. Asokan, K. Vijayakumar, G. Prabhaharan, Optimization of cutting conditions during continuous finished profile machining using non-traditional techniques. Int. J. Adv. Manuf. Tech. 26, 30–40 (2005). doi: 10.1007/s00170-003-1938-x CrossRefGoogle Scholar
  30. R. Sarker, M. Mohammadian, X. Yao, Evolutionary Optimization (Kluwer Academic Publishers, New York, 2003)Google Scholar
  31. W. Sha, K.L. Edwards, The use of artificial neural networks in materials science based research. Mater Design 28, 1747–1752 (2007). doi: 10.1016/j.matdes.2007.02.009 CrossRefGoogle Scholar
  32. W. Siler, J.J. Buckley, Fuzzy Expert Systems and Fuzzy Reasoning (Wiley, Hoboken, 2005)Google Scholar
  33. J.J. Schneider, S. Kirkpatrick, Stochastic Optimization (Springer, Berlin, 2006)zbMATHGoogle Scholar
  34. M. Tajine, D. Elizondo, New methods for testing linear separability. Neurocomputing 47, 161–188 (2002). doi: 10.1016/S0925-2312(01)00587-2 zbMATHCrossRefGoogle Scholar
  35. D.A. Van Veldhuizen, G.B. Lamont, Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. 8, 125–147 (2000). doi: 10.1162/106365600568158 CrossRefGoogle Scholar
  36. N. Zhang, An online gradient method with momentumnext term for two-layer feedforward neural networks. Appl. Math. Comput. 212, 488–498 (2009). doi: 10.1016/j.camwa.2011.09.028 MathSciNetzbMATHCrossRefGoogle Scholar
  37. Y. Zhang, T. Chai, H. Wang, A nonlinear control method based on ANFIS and multiple models for a class of SISO nonlinear systems and its application. IEEE T Neural Netw. 22, 1783–1795 (2011). doi: 10.1109/TNN.2011.2166561 CrossRefGoogle Scholar
  38. E. Zitzler, M. Laumanns, E. Bleuler, A tutorial on evolutionary multiobjective optimization, in Metaheuristics for Multiobjective Optimization, ed. by X. Gandibleux, M. Sevaux, K. Sörensen, V. T’kindt (Springer, Berlin, 2004)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Ramón Quiza
    • 1
  • Omar López-Armas
    • 2
  • J. Paulo Davim
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of MatanzasMatanzasCuba
  2. 2.Department of Mechanical EngineeringUniversity of MatanzasMatanzasCuba
  3. 3.Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations