Finite Element in Manufacturing Processes

  • Ramón Quiza
  • Omar López-Armas
  • J. Paulo Davim
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter explains the basis of the finite element method, highlighting the application for manufacturing modeling problems. A review of the principles of plasticity, as used in modeling of machining and forming processes is presented, including the most frequently used constitutive models. The key issues of the finite element method modeling of these mechanical processes are also explained according with the last researches in this field.


Friction Factor Equivalent Stress Plastic Strain Rate Strain Rate Tensor Deviatoric Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. P.J. Arrazola, T. Özel, Investigations on the effects of friction modeling in finite element simulation of machining. Int. J. Mech. Sci. 52, 31–42 (2010). doi: 10.1016/j.ijmecsci.2009.10.001 CrossRefGoogle Scholar
  2. K.-J. Bathe, Finite Element Procedures (Prentice Hall, Upper Saddle River, 1996)Google Scholar
  3. J. Brocail, M. Watremez, L. Dubar, Identification of a friction model for modelling of orthogonal cutting. Int. J. Mach. Tools Manuf. 50, 807–814 (2010). doi: 10.1016/j.ijmachtools.2010.05.003 CrossRefGoogle Scholar
  4. J. Chakrabarty, Theory of Plasticity, 3rd edn. (Elsevier Butterworth-Heinemann, Oxford, 2006)Google Scholar
  5. P.M. Dixit, U.S. Dixit, Modeling of Metal Forming and Machining Processes by Finite Element and Soft Computing Methods (Springer, London, 2008)Google Scholar
  6. U.S. Dixit, S.N. Joshi, J.P. Davim, Incorporation of material behavior in modeling of metal forming and machining processes: A review. Mater. Des. 32, 3655–3670 (2011). doi: 10.1016/j.matdes.2011.03.049 CrossRefGoogle Scholar
  7. L. Filice, F. Micari, S. Rizzuti, D. Umbrello, A critical analysis on the friction modelling in orthogonal machining. Int. J. Mach. Tools Manuf. 47, 709–714 (2007). doi: 10.1016/j.ijmachtools.2006.05.007 CrossRefGoogle Scholar
  8. B.P.P.A. Gouveia, J.M.C. Rodrigues, P.A.F. Martins, Ductile fracture in metalworking: experimental and theoretical research. J. Mater. Process. Tech. 101, 52–63 (2000). doi: 10.1016/S0924-0136(99)00449-5 CrossRefGoogle Scholar
  9. W. Grzesik, Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique. Int. J. Mach. Tools Manuf. 46, 651–658 (2006). doi: 10.1016/j.ijmachtools.2005.07.009 CrossRefGoogle Scholar
  10. W. Han, B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis (Springer, New York, 1999)zbMATHGoogle Scholar
  11. S.P.F.C. Jasper, J.H. Dautzenberg, Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. J. Mater. Process. Tech. 122, 322–330 (2002). doi: 10.1016/S0924-0136(01)01228-6 CrossRefGoogle Scholar
  12. D.I. Lalwani, N.K. Mehta, P.K. Jain, Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model. J. Mater. Process. Tech. 209, 5305–5312 (2009). doi: 10.1016/j.jmatprotec.2009.03.020 CrossRefGoogle Scholar
  13. K. Li, X.-L. Gao, J.W. Sutherl, Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process. J. Mater. Process. Tech. 127, 309–324 (2002). doi: 10.1016/S0924-0136(02)00281-9 CrossRefGoogle Scholar
  14. G.R. Liu, S.S. Quek, The Finite Element Method: A Practical Course (Butteeworth-Heinemann, Burlington, 2003)zbMATHGoogle Scholar
  15. A.G. Mamalis, A.S. Branis, D.E. Manolakos, Modelling of precision hard cutting using implicit finite element methods. J. Mater. Process. Tech. 123, 464–475 (2002). doi: 10.1016/S0924-0136(02)00133-4 CrossRefGoogle Scholar
  16. M. Mohammadpour, M.R. Razfar, R.J. Saffar, Numerical investigating the effect of machining parameters on residual stresses in orthogonal cutting. Simul. Model Pract. Theory 18, 378–389 (2010). doi: 10.1016/j.simpat.2009.12.004 CrossRefGoogle Scholar
  17. L. Olovsson, L. Nilsson, K. Simonsson, An ALE formulation for the solution of two-dimensional metal cutting problems. Comput. Struct. 72, 497–507 (1999)Google Scholar
  18. T. Özel, E. Zeren, Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests. J. Mate.r Process. Tech. 153–154, 1019–1025 (2004). doi: 10.1016/j.jmatprotec.2004.04.162 CrossRefGoogle Scholar
  19. O. Pantalé, J.-L. Bacaria, O. Dalverny, R. Rakotomalala, S. Caperaa, 2D and 3D numerical models of metal cutting with damage effects. Comput. Method Appl. M. 193, 4383–4399 (2004). doi: 10.1016/j.cma.2003.12.062 zbMATHCrossRefGoogle Scholar
  20. A. Pramanik, L.C. Zhang, J.A. Arsecularatne, An FEM investigation into the behavior of metal matrix composites: Tool–particle interaction during orthogonal cutting. Int. J. Mach. Tools Manuf. 47, 1497–1506 (2007). doi: 10.1016/j.ijmachtools.2006.12.004 CrossRefGoogle Scholar
  21. J. Rech, C. Claudin, E. D’Eramo, Identification of a friction model: Application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool. Tribol. Int. 42, 738–744 (2009). doi: 10.1016/j.triboint.2008.10.007 CrossRefGoogle Scholar
  22. P.A.R. Rosa, O. Kolednik, P.A.F. Martins, A.G. Atkins, The transient beginning to machining and the transition to steady-state cutting. Int. J. Mach. Tools Manuf. 47, 1904–1915 (2007). doi: 10.1016/j.ijmachtools.2007.03.005 CrossRefGoogle Scholar
  23. A. Shabana, Computational Continuum Mechanics (Cambridge University Press, Cambridge, 2008)zbMATHCrossRefGoogle Scholar
  24. C. Shet, X. Deng, Residual stresses and strains in orthogonal metal cutting. Int. J. Mach. Tools Manuf. 43, 573–587 (2003). doi: 10.1016/S0890-6955(03)00018-X CrossRefGoogle Scholar
  25. D. Umbrello, Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J. Mater. Process. Tech. 196, 79–87 (2008). doi: 10.1016/j.jmatprotec.2007.05.007 CrossRefGoogle Scholar
  26. M.R. Vaziri, M. Salimi, M. Mashayekhi, Evaluation of chip formation simulation models for material separation in the presence of damage models. Simul. Model Pract. Theory 19, 718–733 (2011). doi: 10.1016/j.simpat.2010.09.006 CrossRefGoogle Scholar
  27. P. Wriggers, Nonlinear Finite Element Methods (Springer, Berlin, 2008)zbMATHGoogle Scholar
  28. Y.C. Zhang, T. Mabrouki, D. Nelias, Y.D. Gong, Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem. Anal. Des. 47, 850–863 (2011). doi: 10.1016/j.finel.2011.02.016 CrossRefGoogle Scholar
  29. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method: The Basis (Butterworth-Heinemann, Oxford, 2000)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Ramón Quiza
    • 1
  • Omar López-Armas
    • 2
  • J. Paulo Davim
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of MatanzasMatanzasCuba
  2. 2.Department of Mechanical EngineeringUniversity of MatanzasMatanzasCuba
  3. 3.Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations