Plasmonics pp 201-222 | Cite as

Plasmon Nano-Optics: Designing Novel Nano-Tools for Biology and Medicine

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 167)

Abstract

Light plays a growing role in health science especially with the recent developments of new optical techniques that enable imaging biological processes down to the molecular scale and monitor dynamically physiological mechanisms in patients. In parallel, recent groundbreaking advances in nanotechnologies have opened new perspectives in medicine, for instance in creating new therapies or designing novel compact and highly sensitive diagnostic platforms. In this chapter, the aim is to discuss recent research that sits at the convergence of photonics, nanotechnology, and health. This research is based on the extraordinary optical properties of metallic nanoparticles (MNP) supporting Localized Surface Plasmon (LSP) (see Chap.  4). We discuss how plasmonic MNP can be used as nano-sources of either light or heat for biological and medical applications.

Keywords

Localize Surface Plasmon Resonance Gold Nanorods Electromagnetically Induce Transparency Optical Tweezer Optical Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Kottmann, O. Martin, D. Smith, S. Schultz, Opt. Express 6, 213 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    H. Wang, D.W. Brandl, F. Le, P. Nordlander, N.J. Halas, Nano Lett. 6, 827 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    L. Rodriguez-Lorenzo, R.A. lvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stphan, M. Kociak, L.M. Liz-Marzan, F.J. Garca de Abajo. J. Am. Chem. Soc. 131, 4616 (2009)Google Scholar
  4. 4.
    J. Kottmann, O. Martin, Opt. Express 8, 655 (2001)Google Scholar
  5. 5.
    I. Romero, J. Aizpurua, G.W. Bryant, F.J. Garca De Abajo, Opt. Express 14, 9988 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2006)CrossRefGoogle Scholar
  7. 7.
    P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, F.R. Aussenegg, Optics Commun. 220, 137 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    H. Fischer, O.J.F. Martin, Opt. Express 16, 9144 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J.N. Farahani, D.W. Pohl, H.-J. Eisler, B. Hecht, Phys. Rev. Lett. 95, 017402 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    O.L. Muskens, V. Giannini, J.A. Sánchez-Gil, J. Gómez Rivas, Nano Lett. 7, 2871 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    O.J.F. Martin, C. Girard, A. Dereux, Phys. Rev. Lett. 74, 526 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    C. Girard, E. Dujardin, G. Baffou, R. Quidant, New J. Phy. 10, 105016 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    H.M. Pollockand, A. Hammiche, J. Phys. D-Appl. Phys. 34, R23 (2001)Google Scholar
  15. 15.
    J.W. Pomeroy, M. Kuball, D.J. Wallis, A.M. Keir, K.P. Hilton, R.S. Balmer, M.J. Uren, T. Martin, P.J. Heard, Appl. Phys. Lett. 87, 103508 (2005)Google Scholar
  16. 16.
    K.K. Liu, K.L. Davis, M.D. Morris, Anal. Chem. 66, 3744 (1994)CrossRefGoogle Scholar
  17. 17.
    P. Low, B. Kim, N. Takama, C. Bergaud, Small 4, 908 (2008)CrossRefGoogle Scholar
  18. 18.
    G.A. Robinson, R.P. Lucht, M. Laurendeau, Appl. Opt. 47, 2852 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    B. Samson, L. Aigouy, P. Low, C. Bergaud, B.J. Kim, M. Mortier, Appl. Phys. Lett. 92, 023101 (2008)Google Scholar
  20. 20.
    G. Baffou, M.P. Kreuzer, F. Kulzer, R. Quidant, Optics Express 17, 3291 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, New York, 2002)Google Scholar
  22. 22.
    G. Baffou, C. Girard, R. Quidant, Phys. Rev. Lett. 104, 136805 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    J. Homola, S.S. Yee, G. Gauglitz, Sens. Actuators B 54, 3 (1999)CrossRefGoogle Scholar
  24. 24.
    G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T.A. Klar, J. Feldmann, A. Nichtl, K. Kurzinger, Nano. Lett. 3, 935 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    E.M. Larsson, J. Alegret, M. Kall, D.S. Sutherland, Nano Lett. 7, 1256 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    M.P. Jonsson, P. Jonsson, A.B. Dahlin, F. Hook, Nano Lett. 7, 3462 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    S. Chen, M. Svedendahl, M. Käll, L. Gunnarsson, A. Dmitriev, Nanotechnology 20, 434015 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    S. Enoch, R. Quidant, G. Badenes, Opt. Express 12, 3422 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    L. Li, J. Opt. Soc. Am. A 14, 2758 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    P.K. Jain, M.A. El-Sayed, Nano Lett. 8, 4347–4352 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    S. Acimovics, M.P. Kreuzer, M.U. Gonzlez, R. Quidant, ACS Nano 3, 1231 (2009)CrossRefGoogle Scholar
  32. 32.
    N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V.V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. Maier, Nano Lett. 9, 1663 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Snnichsen, H. Giessen, Nano Lett. 10, 1103 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    A.B. Evlyukhin, S.I. Bozhevolnyi, A. Pors, M.G. Nielsen, I.P. Radko, M. Willatzen, O. Albrektsen, Nano Lett. 10, 4571 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    J.T. Finer, R.M. Simmons, J.A. Spudich, Nature 368, 113 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    C. Creely, G. Volpe, G. Singh, M. Soler, D. Petrov, Opt. Express 13, 6105 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    D. Grier, Nature 424, 810 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    L. Novotny, R.X. Bian, X.S. Xie, Phys. Rev. Lett. 79, 645 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    O.J.F. Martin, C. Girard, Appl. Phys. Lett. 70, 705 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    K. Okamoto, S. Kawata, Phys. Rev. Lett. 83, 4534 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    R. Quidant, D.V. Petrov, G. Badenes, Opt. Lett. 30, 1009 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    V. Garcés-Chávez, R. Quidant, P.J. Reece, G. Badenes, L. Torner, K. Dholakia, Phys. Rev. B 73, 085417 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    G. Volpe, R. Quidant, G. Badenes, D. Petrov, Phys. Rev. Lett. 96, 238101 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    M. Righini, A.S. Zelenina, C. Girard, R. Quidant, Nat. Phys. 3, 477 (2007)CrossRefGoogle Scholar
  46. 46.
    M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, Phys. Rev. Lett. 100, 186804 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    L. Huang, S.J. Maerkl, O.J. Martin, Opt. Express 17, 6018 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    A.N. Grigorenko, N.W. Roberts, M.R. Dickinson, Y. Zhang, Nat. Photonics 2, 365 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F.J. Garca de Abajo, R. Quidant, Nano Lett. 9, 3387 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    M.B. Rasmussen, Appl. Environ. Microbiol. 174, 2441 (2008)CrossRefGoogle Scholar
  51. 51.
    M.L. Juan, R. Gordon, Y. Pang, F. Eftekhari, R. Quidant, Nat. Phys. 5, 915 (2009)CrossRefGoogle Scholar
  52. 52.
    S. Pierrat, I. Zins, A. Breivogel, C. Sonnichsen, Nano Lett. 7, 259 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    H. Liao, J.H. Hafner, Chem. Mater. 17, 4636 (2005)CrossRefGoogle Scholar
  54. 54.
    E.E Connor, J. Mwamuka, A. Gole, J.C. Murphy, M.D. Wyatt, Small 1, 325 (2005)Google Scholar
  55. 55.
    N. Lewinski, V. Colvin, R. Drezek, Small 4, 26 (2008)CrossRefGoogle Scholar
  56. 56.
    L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, Proc. Natl. Acad. Sci. U. S. A. 100, 13549 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    C. Loo, A. Lowery, N.J. Halas, J. West, R. Drezeck, Nano Lett. 5, 709 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    X.H. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006)CrossRefGoogle Scholar
  59. 59.
  60. 60.
    I.H. El-Sayed, X. Huang, M.A. El-Sayed, Nano Lett. 5, 829 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    S. Kumar, N. Harrison, R. Richards-Kortum, K. Sokolov, Nano Lett. 7, 1338 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    J. Aaron, K. Travis, N. Harrison, K. Sokolov, Nano Lett. 9, 3612 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    B. Wang, E. Yantsen, T. Larson, A.B. Karpiouk, S. Sethuraman, J.L. Su, K. Sokolov, S.Y. Emelianov, Nano Lett. 9, 2212 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    S. Mallidi, T. Larson, J. Tam, P.P. Joshi, A. Karpiouk, K. Sokolov, S. Emelianov, Nano Lett. 9, 2825 (2009)Google Scholar
  65. 65.
    M.R. Choi, K.J. Stanton-Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, S.E. Clare, Nano Lett. 7, 3759 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    R. Huschka, O. Neumann, A. Barhoumi, N.J. Halas, Nano Lett. 10, 4117 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ICFO-Institut de Ciencies FotoniquesCastelldefelsSpain
  2. 2.ICREA-Institucio Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations