Plasmonics pp 177-200 | Cite as

Plasmons on Separated Particles: Homogenization and Applications

  • Ross McPhedran
Part of the Springer Series in Optical Sciences book series (SSOS, volume 167)


In this chapter, we discuss localized plasmons in optical systems containing metallic particles, clusters of metallic particles, or periodic arrays of metallic particles, separated in all cases by a background dielectric material or matrix. We begin with a brief discussion of the equations governing electromagnetic propagation in structured or composite systems containing metal particles in a matrix. A full electromagnetic solution for a periodic array of particles or a finite cluster of them is possible, but much can be learned from treatments in the quasistatic approximation, where properties of the particles are subsumed in effective dielectric permittivities and magnetic permeabilities, and these are used in Maxwells’ equations for a homogeneous material to calculate reflection and transmission properties. The two most important equations used to calculate effective dielectric permittivities and magnetic permeabilities are the Maxwell-Garnett formula and Bruggeman’s effective medium formulae. We compare these in Sect. 6.3, and look at applications in Sect. 6.4 to the field of selective absorbers for photothermal and photovoltaic energy applications. In the next section, we go on to consider collections of particles and their resonant properties, which can be exploited to deliver strong local concentrations of electromagnetic fields. These are used in Sects. 6.6 and 6.7 to discuss cloaking using plasmonic resonance, and spasers, devices which can overcome through amplification the propagation losses associated with plasmons.


Plasmonic Resonance Dielectric Permittivity Metallic Particle Polarizable Dipole Effective Permittivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Freestone, N. Meeks, M. Sax, C. Higgitt, The Lycurgus Cup—a Roman nanotechnology.
  2. 2.
    N. Stefanou, V. Yannopapas, A. Modinos, MULTEM2: a new version of a program for transmission and band-structure calculations of photonic crystals. Comput. Phys. Commun. 132, 189196 (2000)CrossRefGoogle Scholar
  3. 3.
    G. Mie, Beitrge zur Optik trber Medien, speziell kolloidaler Metallsungen, Leipzig. Ann. Phys. 330, 37745 (1908)CrossRefGoogle Scholar
  4. 4.
    J. Korringa, On the calculation of the energy of a bloch wave in a metal. Physica 13, 392 (1947)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    W. Kohn, N. Rostoker, Solution of the Schrodinger equation in periodic lattices with application to metallic lithium. Phys. Rev. 94, 1111 (1954)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    G.W. Milton, The Theory of Composites (Cambridge University Press, Cambridge, 2002)Google Scholar
  7. 7.
    W. Lamb, D.M. Wood, N.W. Ashcroft, Long-wavelength Electromagnetic Propagation in Heterogeneous Media. Phys. Rev. B 21, 2248–2266 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    R.C. McPhedran, L.C. Botten, M.S. Craig, M. Neviere, D. Maystre, Lossy lamellar gratings in the quasistatic limit. Opt. Acta 29, 289–312 (1982)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    R.C. McPhedran, C.G. Poulton, N.A. Nicorovici, A.B. Movchan, Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material. Proc. R. Soc. Lond. A 415, 185–1896 (1996)Google Scholar
  10. 10.
    R. Landauer, Electrical Conductivity in Inhomogeneous Media, ed. by J.C. Garland, D.B. Tanner. Electrical Transport and Optical Properties of Inhomogeneous Media (American Institute of Physics Conference Proceedings Series, New York, 1978), pp. 2–43Google Scholar
  11. 11.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)Google Scholar
  12. 12.
    L. Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag. 34, 481–502 (1892)zbMATHCrossRefGoogle Scholar
  13. 13.
    W.T. Doyle, The Clausius-Mossotti problem for cubic arrays of spheres. J. Appl. Phys. 49, 795–797 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    R.C. McPhedran, D.R. McKenzie, The conductivity of lattices of spheres. I. The simple cubic lattice, Proc. R. Soc. A 359, 45–63 (1978)Google Scholar
  15. 15.
    D.R. McKenzie, R.C. McPhedan, G.H. Derrick, The conductivity of lattices of spheres. II. The body-centred and face-centred cubic lattices, Proc. R. Soc. A 362, 211–232(1978)Google Scholar
  16. 16.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1980)Google Scholar
  17. 17.
    B.U. Felderhof, R.B. Jones, Addition theorems for spherical wave solutions of the vector Helmholtz equation. J. Math. Phys. 28, 836–839 (1987)MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    D.J. Bergman, The dielctric constant of a simple cubic lattice of identical spheres. J. Phys. C: Solid State Phys. 12, 4947–4960 (1979)ADSCrossRefGoogle Scholar
  19. 19.
    D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogen Substanzen. I. Dielektrizitätskontanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 24, 636–679 (1935)CrossRefGoogle Scholar
  20. 20.
    J.B. Keller, A theorem on the conductivity of a composite medium. J. Math. Phys. 5, 548–549 (1964)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    A.M. Dykhne, Conductivity of a two-dimensional two-phase system. Sov. Phys. JETP 32, 63–65 (1971)ADSGoogle Scholar
  22. 22.
    W.T. Perrins, D.R. McKenzie, R.C. McPhedran, Transport properties of regular arrays of cylinders. Proc. Roy. S. Lond. A 369, 207–225 (1979)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    D.J. Bergman, Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material. Phys. Rev. Lett. 44, 1285–1287 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    G.W. Milton, Bounds on the complex dielectric constant of a composite material. Appl. Phys. Lett. 37, 300–302 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    R.C. McPhedran, D.R. McKenzie, G.W. Milton, Extraction of structural information from measured transport properties of composites. Appl. Phys. A 29, 19–27 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    E. Cherkaeva, K. Golden, Inverse bounds for microstructural parameters of composite media derived from complex permittivity measurements. Waves Random Media 8, 437–450 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    J.B. Keller, Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. J. Appl. Phys. 34, 991–993 (1963)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    J.D. Bernal, Radial distribution of random close packing of equal spheres. Proc. R. Soc. A 280, 299–322 (1962)ADSCrossRefGoogle Scholar
  29. 29.
    G.K. Batchelor, R.W. O’Brien, Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. 355, 313–333 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    I.J. Romero, F.C. Garcia d’Abajo, Anisotropy and particle-size effects in nanostructured plasmonic metmamaterials. Opt. Express 17, 22012–22022 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    R.C. McPhedran, L. Poladian, G.W. Milton, Asymptotic studies of closely spaced, highly conducting cylinders. Proc. R. Soc. A 415, 185–196 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    A. Alu and N. Engheta, Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy, N. J. Phys. 11(0130226), 14 (2009)Google Scholar
  33. 33.
    X. Jiang, Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application. Opt. Express 18, A112–A117 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    D.R. McKenzie, Gold, silver, chromium, and copper cermet selective surfaces for evacuated solar collectors. Appl. Phys. Lett. 34, 25–28 (1979)ADSCrossRefGoogle Scholar
  35. 35.
    Q.-C. Zhang, Y. Yin, D.R. Mills, High efficiency Mo-Al\(_2\)O\(_3\) cermet selective surfaces for high-temperature applications. Sol. Energy Mater. Sol. Cells 40, 43–53 (1996)Google Scholar
  36. 36.
    Q.-C. Zhang, D.R. Mills, Very low-emittance solar selective surfaces using new film structures, J. Appl. Phys. 72, 3013–3021 (1992)Google Scholar
  37. 37.
    S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(093105), 1–8 (2007)Google Scholar
  38. 38.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983)Google Scholar
  39. 39.
    N.A. Nicorovici, R.C. McPhedran, G.W. Milton, Transport properties of a three-phase composite material: the square array of coated cylinders. Proc. R. Soc. Lond. A 442, 599–620 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    N.A. Nicorovici, R.C. McPhedran, G.W. Milton, Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    J.B. Pendry, negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    U. Leonhardt, Optical conformal mapping. Science 312, 1777–1780 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    A. Alu, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    A. Alu, N. Engheta, Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insight. Opt. Express 15, 3318–3332 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    B. Edwards, A. Alu, M.G. Silveirinha, N. Engheta, Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett. 103, 153901, 4 (2009)Google Scholar
  47. 47.
    G.W. Milton, N.A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. Lond. A 462, 3027–3059 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. 48.
    N.-A.P. Nicorovici, G.W. Milton, R.C. McPhedran, L.C. Botten, Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. Opt. Express, 15, 6314–6323 (2007)Google Scholar
  49. 49.
    D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems, Phys. Rev. Lett. 90, 027402, 4 (2003)Google Scholar
  50. 50.
    M.I. Stockman, The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004, 13 (2010)Google Scholar
  51. 51.
    M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep sub-wavelength scale. Nature 461, 629–632 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CUDOS and IPOS School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations