Advertisement

Plasmonics pp 85-103 | Cite as

A New Look at Grating Theories Through the Extraordinary Optical Transmission Phenomenon

  • Philippe Lalanne
  • Haitao Liu
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 167)

Abstract

The electromagnetic properties of subwavelength metallic surfaces are due to two kinds of elementary distinct waves: the famous surface plasmon polariton and the quasi-cylindrical wave, which are both scattered by the subwavelength indentations as they propagate on the metal. The ab initio microscopic description of the electromagnetic properties starting from the sole knowledge of the elementary waves launched in between the indentation has a long history in grating theories. We review the evolution of the ideas and the fundamental principles that govern these waves and their impacts. For the sake of illustration, the emblematic case of a metal surface perforated by a subwavelength-hole array, which exhibits remarkable transmission properties, is taken to illustrate our purpose.

Keywords

Leaky Mode Frequency Selective Surface Elementary Wave Extraordinary Optical Transmission Rigorous Couple Wave Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Haitao Liu acknowledges financial supports from the Natural Science Foundation of China (No. 10804057), from the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 708021), and from the Program for New Century Excellent Talents in University (No. NCET-08-0289). Jean Paul Hugonin and Pierre Chavel are acknowledged for fruitful discussions and for careful readings of the manuscript.

References

  1. 1.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    H. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    A. Roberts, Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen. J. Opt. Soc. Am A 4, 1970–1983 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    C. Genet, M.P. van Exter, J.P. Woerdman, Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 225, 331–336 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    F. Przybilla, A. Degiron, C. Genet, T.W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. Garcia-Vidal, L. Martin-Moreno, Efficiency and finite size effects in enhanced transmission through subwavelength apertures. Opt. Express 16, 9571–79 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39–46 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J.V. Coe, J.M. Heer, S. Teeters-Kennedy, H. Tian, K.R. Rodriguez, Extraordinary transmission of metal films with arrays of subwavelength holes. Ann. Rev. Phys. Chem. 59, 179–202 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980)CrossRefGoogle Scholar
  10. 10.
    H.T. Liu, P. Lalanne, Microscopic model for the extraordinary optical transmission. Nature 452, 728 731 (2008)Google Scholar
  11. 11.
    U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)ADSCrossRefGoogle Scholar
  12. 12.
    Lord Rayleigh, On the dynamical theory of gratings. Proc. R. Soc. (London) A79, 399–416 (1907)ADSGoogle Scholar
  13. 13.
    R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    A. Hessel, A.A. Oliner, A new theory of Wood’s anomalies on optical gratings. Appl. Opt. 4, 1275–97 (1965)Google Scholar
  15. 15.
    D. Maystre, General study of grating anomalies from electromagnetic surface modes. in Electromagnetic Surface Modes, ed. by A.D. Boardman, Chapter 17 (Wiley, New York, 1982)Google Scholar
  16. 16.
    E. Popov, Light diffraction by relief gratings. Prog. Opt. 31, 141–187 (1993)Google Scholar
  17. 17.
    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Beaming light from a subwavelength aperture. Science 297, 820–822 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    V. Twersky, On a multiple scattering theory of the finite grating and the Wood anomaly. J. Appl. Phys. 23, 1099–1118 (1952)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    J.J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry, Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    P. Lalanne, J.P. Hugonin, S. Astilean, M. Palamaru, K.D. Möller, One-mode model and airy-like formulae for 1D metallic gratings. J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    S. Astilean, P. Lalanne, M. Palamaru, Light transmission through metallic channels much smaller than the wavelength. Opt. Commun. 175, 265–273 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    M.M.J. Treacy, Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys. Rev. B 66, 195105 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Q. Cao, P. Lalanne, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88, 057403 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    P. Lalanne, J.P. Hugonin, H.T. Liu, B. Wang, A microscopic view of the electromagnetic properties of sub-metallic surfaces. Surf. Sci. Rep. 64, 453–469 (2009)CrossRefGoogle Scholar
  25. 25.
    D. Maystre, A. L. Fehrembach and E. Popov, Plasmonic antiresonance through subwavelength hole arrays, J. Opt. Soc. Am. A 28, 342–355 (2011)CrossRefGoogle Scholar
  26. 26.
    G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H.J. Lezec, The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nat. Phys. 2, 262–267 (2006)CrossRefGoogle Scholar
  27. 27.
    I. Zenneck, Propagation of plane electromagnetic waves along a plane conducting surface and its bearing on the theory of transmission in wireless telegraphy. Ann. Phys. 23, 846–866 (1907)zbMATHCrossRefGoogle Scholar
  28. 28.
    A. Sommerfeld, The broadening of the waves and the wireless telegraph. Ann. der Physik 28, 665–36 (1909)ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    A. Sommerfeld, The propagation of waves in wireless telegraphy. Ann. der Physik 81, 1135–1153 (1926)ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    K.A. Norton, Propagation of radio waves over a plane earth. Nature 135, 954–955 (1935)ADSCrossRefGoogle Scholar
  31. 31.
    K.A. Norton, The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. IRE 24, 1367–1387 (1936) and 1203–1236 (1937)Google Scholar
  32. 32.
    R.E. Collin, Hertzian dipole radiating over a lossy earth or sea: some early and late 20th-century controversies. IEEE Antennas Propag. Mag. 46, 64–79 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    A. Baños, Dipole Radiation in the Presence of a Conducting Half-Space (Pergamon Press, Oxford, 1966)Google Scholar
  34. 34.
    P. Lalanne, J.P. Hugonin, Interaction between optical nano-objects at metallo-dielectric interfaces. Nat. Phys. 2, 551–556 (2006)CrossRefGoogle Scholar
  35. 35.
    L. Aigouy, P. Lalanne, J.P. Hugonin, G. Julié, V. Mathet, M. Mortier, Near-field analysis of surface waves launched at nano-slit apertures. Phys. Rev. Lett. 98, 153902 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    W. Dai, C.M. Soukoulis, Theoretical analysis of the surface wave along a metal-dielectric interface. Phys. Rev. B 80, 155407 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    A.Y. Nikitin, S.G. Rodrigo, F.J. Garcia-Vidal, L. Martin-Moreno, In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region. New J. Phys. 11, 123020 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    F.J. Garcia-Vidal, L. Martin-Moreno, T.W. Ebbesen, L. Kuipers, Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    E. Popov, M. Nevière, S. Enoch, R. Reinisch, Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B 62, 16100 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    P. Lalanne, J.C. Rodier, J.P. Hugonin, Surface plasmons of metallic surfaces perforated by nanohole arrays. J. Opt. A: Pure Appl. Opt 7, 422–426 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    H.T. Liu, P. Lalanne, A comprehensive microscopic model of the extraordinary optical transmission. J. Opt. Soc. Am. A 27, 2542–2550 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    X. Huang, M.L. Brongersma, Rapid computation of light scattering from aperiodic plasmonic structures, Phys. Rev. B 84, 245120 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire Charles Fabry de l’Institut d’Optique, CNRSUniv Paris-Sud Campus PolytechniquePalaiseau cedexFrance
  2. 2.Key Laboratory of Opto-electronic Information Science and Technology, Ministry of EducationInstitute of Modern Optics, Nankai UniversityTianjinChina

Personalised recommendations