Skip to main content

Theory of Wood’s Anomalies

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 167))

Abstract

Discovered by Wood in 1902, grating anomalies have fascinated specialists of optics for more than one century. Long after the first interpretation given by Rayleigh, Fano has suggested that the origin of anomalies could be found in the excitation of surface waves. This chapter describes the quantitative phenomenological theory of Wood’s anomalies developed in the 1970s, based on the interpretation given by Fano and on the macroscopic laws of electromagnetics. This theory leads to a formula giving the efficiency of gratings in the region of anomaly and predicts the phenomenon of total absorption of light by a grating.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 4, 396–402 (1902)

    Article  Google Scholar 

  2. Lord Rayleigh, Note on the remarkable case of diffraction spectra described by Prof. Wood. Philos. Mag. 14, 60–65 (1907)

    Article  Google Scholar 

  3. Lord Rayleigh, On the dynamical theory of gratings. Proc. R. Soc. Lond.79, 399–416 (1907)

    ADS  MATH  Google Scholar 

  4. J. Strong, Effect of evaporated films on energy distribution in grating spectra. Phys. Rev. 49, 291–296 (1936)

    Article  ADS  Google Scholar 

  5. U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)

    Article  ADS  Google Scholar 

  6. A. Hessel, A.A. Oliner, A new theory of Wood’s anomalies on optical gratings. Appl. Opt. 4, 1275–1297 (1965)

    Article  ADS  Google Scholar 

  7. C.H. Palmer Jr., Parallel diffraction grating anomalies. J. Opt. Soc. Am. 42, 269–276 (1952)

    Article  ADS  Google Scholar 

  8. C.H. Palmer Jr., Diffraction grating anomalies, II, coarse gratings. J. Opt. Soc. Am. 46, 50–53 (1956)

    Article  ADS  Google Scholar 

  9. J.E. Stewart, W.S. Gallaway, Diffraction anomalies in grating spectrophotometers. Appl. Opt. 1, 421–429 (1962)

    Article  ADS  Google Scholar 

  10. D. Rudolph, G. Schmahl, Spektroscopische beugungsgitter hoher teilungsgenauigkeit erzeugt mit Hilfe von Laserlicht und photoresistschichten. Optik 30, 475–487 (1970)

    ADS  Google Scholar 

  11. D. Maystre, Sur la diffraction d’une onde plane par un réseau métallique de conductivité finie. Opt. Commun. 6, 50–54 (1972)

    Article  ADS  Google Scholar 

  12. D. Maystre, Sur la diffraction d’une onde plane électromagnétique par un réseau métallique. Opt. Commun. 8, 216–219 (1973)

    Article  ADS  Google Scholar 

  13. R. Petit, Etude numérique de la diffraction par un réseau. C. R. Acad. Sci. Paris 260, 4454–4457 (1965)

    MathSciNet  Google Scholar 

  14. R. Petit, Contribution à l’étude de la diffraction par un réseau métallique. Rev. Opt. 45, 249–276 (1966)

    Google Scholar 

  15. A. Wirgin, Considérations théoriques sur la diffraction par réflexion sur des surfaces, quasiment planes, applications à la diffraction par des réseaux, C. R. Acad. Sci. Paris 259, 1486–1488 (1964)

    Google Scholar 

  16. A. Wirgin, Théorie électromagnétique de la diffraction d’une onde par une surface quasiment plane, Thèse d’Etat, Université de Paris, France, 1967

    Google Scholar 

  17. J. Pavageau, J. Bousquet, Diffraction par un réseau conducteur nouvelle méthode de résolution. Opt. Acta 17, 469–478 (1970)

    Article  ADS  Google Scholar 

  18. R. Petit, D. Maystre, M. Nevière, Practical applications of the electromagnetic theory of gratings, Space Optics, in Proceedings of the Ninth International Congress of Optics, 1974, vol. 2, pp. 667–681

    Google Scholar 

  19. J.L. Uretsky, The scattering of plane waves from periodic surfaces. Ann. Phys. 33, 400–427 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Maystre, R.C. Mc Phedran, Le théorème de réciprocité pour les réseaux de conductivite finie: demonstration et applications. Opt. Commun. 12, 164–167 (1974)

    Article  ADS  Google Scholar 

  21. D. Maystre, Sur la diffraction et l’absorption par les réseaux utilisés dans l’infrarouge, le visible et l’ultraviolet; applications à la spectroscopie et au filtrage des ondes électromagnétiques, Thèse d’Etat, Université d’Aix-Marseille, 1974

    Google Scholar 

  22. R.C. McPhedran, M.D. Waterworth, Properties of diffraction grating anomalies. Opt. Acta 20, 533–547 (1973)

    Article  ADS  Google Scholar 

  23. M.C. Hutley, An experimental study of the anomalies of sinusoidal diffraction gratings. Opt. Acta 20, 607–624 (1973)

    Article  Google Scholar 

  24. M.C. Hutley, V.M. Bird, A detailed experimental study of the anomalies of a sinusoidal diffraction grating. Opt. Acta 20, 771–782 (1973)

    Article  Google Scholar 

  25. R.C. McPhedran, D. Maystre, A detailed theoretical study of the anomalies of a sinusoidal diffraction grating. Opt. Acta 21, 413–421 (1974)

    Article  ADS  Google Scholar 

  26. R.C. McPhedran, D. Maystre, Theoretical study of the diffraction anomalies of holographic gratings. Nouv. Rev. Opt. 5, 241–248 (1974)

    Article  Google Scholar 

  27. R.C. McPhedran, D. Maystre, Inadequacy of perfect reflectivity model for holographic gratings even in the visible region. J. Spectrosc. Soc. Jpn. 23 (suppl. Number 1) 13–20 (1974)

    Google Scholar 

  28. M.C. Hutley, J.P. Verrill, R.C. McPhedran, M. Nevière, P. Vincent, Presentation and verification of a differential formulation for the diffraction by conducting gratings. Nouv. Rev. Opt. 6, 87–95 (1975)

    Article  Google Scholar 

  29. R. Petit (ed.), Electromagnetic Theory of Gratings. Topics in Current Physics (Springer, Berlin, 1980)

    Google Scholar 

  30. D. Maystre, General study of grating anomalies from electromagnetic surface modes, in Electromagnetic Surface Modes, ed. by A.D. Boardmanm (Wiley, New York, 1982)

    Google Scholar 

  31. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  32. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968)

    Article  ADS  Google Scholar 

  33. J.J. Cowan, E.T. Arakawa, Dispersion of surface plasmons in dielectric-metal coating on concave diffraction gratings. Z. Phys. 235, 97–109 (1970)

    Article  ADS  Google Scholar 

  34. J.J. Cowan, E.T. Arakawa, Artificial polarization anomalies from holographic gratings. Opt. Commun. 21, 428–431 (1977)

    Article  ADS  Google Scholar 

  35. H. Raether, in Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111 (Springer, New York, 1988)

    Google Scholar 

  36. I. Pockrand, Reflection of light from periodically corrugated silver films near the plasma frequency. Phys. Lett. 49A, 259–260 (1974)

    ADS  Google Scholar 

  37. I. Pockrand, Coupling of surface plasma oscillations in thin periodically corrugated silver films. Opt. Commun. 13, 311–313 (1975)

    Article  ADS  Google Scholar 

  38. H. Raether, On the influence of roughness on the optical properties of surfaces: plasma resonance emission and the plasmon dispersion relation. Thin Solid Films 28, 119–124 (1975)

    Article  ADS  Google Scholar 

  39. R. Orlowski, H. Raether, The total reflection of light at smooth and rough silver films and surface plasmons. Surf. Sci. 54, 303–308 (1975)

    Article  Google Scholar 

  40. I. Pockrand, H. Raether, Surface plasma-oscillations in silver films with wavy surface profiles—quantitative experimental study. Opt. Commun. 18, 395–399 (1976)

    Article  ADS  Google Scholar 

  41. I. Pockrand, Resonance anomalies in light intensity reflected at silver gratings with dielectric coatings. J. Phys. D Appl. Phys. 9, 2423–2432 (1976)

    Article  ADS  Google Scholar 

  42. E. Kröger, E. Kretschmann, Surface plasmon and polariton dispersion at rough boundaries. Phys. Status Solid. B 76, 515–523 (1976)

    Article  ADS  Google Scholar 

  43. I. Pockrand, H. Raether, Surface plasma oscillations at sinusoidal silver surfaces. Appl. Opt. 16, 1784–1786 (1977)

    Article  ADS  Google Scholar 

  44. C.J. Powell, J.B. Swan, Origin of the characteristic electron energy losses in aluminium. Phys. Rev. 115, 869–875 (1959)

    Article  ADS  Google Scholar 

  45. D. Maystre, Rigorous vector theories of diffraction gratings, in Progress in Optics, vol. 21, ed. by E. Wolf (North-Holland, Amsterdam, 1984), pp. 1–67

    Google Scholar 

  46. E. Popov, L. Tsonev, D. Maystre, Losses of plasmon surface wave on metallic grating. J. Mod. Opt. 37, 379–387 (1990)

    Article  ADS  Google Scholar 

  47. E.C. Titchmarsh, The Theory of Functions, 2nd edn. (Oxford University Press, London, 1939)

    Google Scholar 

  48. P.M. Morse, H. Feshbach, Derivatives of analytic functions, in Methods of Theoretical Physics, Taylor and Laurent Series, Part I (McGraw-Hill, New York, 1953), pp. 374–398

    Google Scholar 

  49. D. Maystre, R. Petit, Brewster incidence for metallic gratings. Opt. Commun. 17, 196–200 (1976)

    Article  ADS  Google Scholar 

  50. M.C. Hutley, D. Maystre, The total absorption of light by a diffraction grating. Opt. Commun. 19, 431–436 (1976)

    Article  ADS  Google Scholar 

  51. J. Le Perchec, P. Quemerais, A. Barbara, T. Lopez-Rios, Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. Phys. Rev. Lett. 100, 066408 (2008)

    Article  ADS  Google Scholar 

  52. D.C. Cullen, C.R. Lowe, A direct surface plasmon-polariton immunosensor: preliminary investigation of the non-specific adsorption of serum components to the sensor surface. Sens. Actuators B 1, 576–579 (1990)

    Article  Google Scholar 

  53. M. Nevière, R. Reinisch, Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering. Phys. Rev. B 26, 5403–5408 (1982)

    Article  ADS  Google Scholar 

  54. R. Reinisch, M. Nevière, Electromagnetic theory of diffraction in nonlinear optics and surface enhanced nonlinear optical effects. Phys. Rev. 28, 1870–1885 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  55. G.H. Derrick, R.C. McPhedran, D. Maystre, M. Nevière, Crossed gratings: a theory and its applications. Appl. Phys. 18, 39–52 (1979)

    Article  ADS  Google Scholar 

  56. T.V. Teperik, F.J. García De Abajo, A.G. Borisov, M. Abdelsalam, P.N. Bartlett, Y. Sugawara, J.J. Baumberg, Omnidirectional absorption in nanostructured metal surface. Nat. Photonics 2, 299–301 (2008)

    Article  Google Scholar 

  57. E.L. Wood, J.R. Sambles, N.P. Cotter, S.C. Kitson, Diffraction grating characterization using multiplewavelength excitation of surface-plasmon polaritons. J. Mod. Opt. 42, 1343–1349 (1995)

    Article  ADS  Google Scholar 

  58. F. Pincemin, J.-J. Greffet, J.-J. Greffet, Propagation and localization of a surface plasmon polariton on a finite grating. J. Opt. Soc. Am. B 13, 1499–1509 (1996)

    Article  ADS  Google Scholar 

  59. W.L. Barnes, S.C. Kitson, T.W. Preist, J.R. Sambles, Photonic surfaces for surface-plasmon polaritons. J. Opt. Soc. Am. A 14, 1654–1661 (1997)

    Article  ADS  Google Scholar 

  60. T. López-Rios, D. Mendoza, F.J. Garcia-Vidal, J. Sánchez-Dehesa, B. Pannetier, Surface shape resonances in lamellar metallic gratings. Phys. Rev. Lett. 81, 665–668 (1998)

    Article  ADS  Google Scholar 

  61. F.J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, B. Pannetier, Localized surface plasmons in lamellar metallic gratings. J. Lightwave Technol. 17, 2191–2195 (1999)

    Article  ADS  Google Scholar 

  62. W.-C. Tan, T.W. Preist, J.R. Sambles, N.P. Wanstall, Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings. Phys. Rev. B 59, 12661–12666 (1999)

    Article  ADS  Google Scholar 

  63. E.A. Smith, R.M. Corn, Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl. Spectrosc. 57, 320A–332A (2003)

    Article  ADS  Google Scholar 

  64. R. Hooper, J.R. Sambles, Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount. J. Opt. Soc. Am. 20, 836–843 (2003)

    Article  ADS  Google Scholar 

  65. S.F. Cheng, L.K. Chau, Colloidal gold modified optical fiber for chemical and biochemical sensing. Anal. Chem. 75, 16–21 (2003)

    Article  Google Scholar 

  66. E. Hutter, J. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004)

    Article  Google Scholar 

  67. S. Collin, F. Pardo, R. Teissier, J.L. Pelouard, Efficient light absorption in metal-semiconductor-metal nanostructures. Appl. Phys. Lett. 85, 194–196 (2004)

    Article  ADS  Google Scholar 

  68. K. Aslan, J.R. Lakowicz, C. Geddes, Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538–544 (2005)

    Article  Google Scholar 

  69. J.N. Gollub, D.R. Smith, D.C. Vier, T. Perram, J.J. Mock, Phys. Rev. B 71, 195402 (2005)

    Article  ADS  Google Scholar 

  70. L.K. Chau, Y.F. Lin, S.F. Cheng, T.J. Lin, Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sens. Actuators B 113, 100–105 (2006)

    Article  Google Scholar 

  71. E. Popov, N. Bonod, S. Enoch, Non-Bloch plasmonic stop-band in real-metal gratings. Opt. Express 10, 6241–6250 (2007)

    Article  ADS  Google Scholar 

  72. E. Popov, N. Bonod, S. Enoch, Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings. Opt. Express 15, 4224–4237 (2007)

    Article  ADS  Google Scholar 

  73. N. Bonod, E. Popov, L. Li, B. Chernov, Unidirectional excitation of surface plasmon by slanted grating. Opt. Express 18, 11427–11432 (2007)

    Article  ADS  Google Scholar 

  74. M. Guizar-Sicairos, J.C. Gutierrez-Vega, Propagation of Helmholtz-Gauss beams in absorbing and gain media. J. Opt. Soc. Am. 23, 1994–2001 (2006)

    Article  ADS  Google Scholar 

  75. E.G. Loewen, M. Nevière, Dielectric coated gratings—curious property. Appl. Opt. 16, 3009–3011 (1977)

    Article  ADS  Google Scholar 

  76. D. Maystre, M. Nevière, P. Vincent, General theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves. Optica Acta 25, 905–915 (1978)

    Article  ADS  Google Scholar 

  77. M. Nevière, D. Maystre, G.H. Derrick, R.C. McPhedran, M.C. Hutley, On the total absorption of unpolarized monochromatic light, in Proceedings of I.C.O.XI Conference, Madrid, Spain, 1978, pp. 609–612

    Google Scholar 

  78. E. Popov, D. Maystre, R.C. McPhedran, M. Nevière, M.C. Hutley, G.H. Derrick, Total absorption of unpolarized light by crossed gratings. Opt. Express 16, 6146–6155 (2008)

    Article  ADS  Google Scholar 

  79. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, E. Popov, Total absorption of light by lamellar metallic gratings. Opt. Express 16, 15431–15438 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Maystre .

Editor information

Editors and Affiliations

Appendix 1: Electromagnetic modelling in Two Dimensions

Appendix 1: Electromagnetic modelling in Two Dimensions

We consider an interface \(\Sigma \) separating two homogeneous regions R\(_{1}\) and R\(_{2}\). The Maxwell equations write:

$$\begin{aligned} \nabla \times \mathbf{ E}&= -\partial \mathbf{ B} /\partial t,\end{aligned}$$
(2.56)
$$\begin{aligned} \nabla \times \mathbf{ H}&= \mathbf{ j} _c +\partial \mathbf{ D} /\partial t, \end{aligned}$$
(2.57)

where E and H are the electric and magnetic fields, D and B are the electric and magnetic inductions, and \(\mathbf{ j} _{c}\) is the conduction current density. In the harmonic regime, the fields and currents have a sinusoidal behaviour in time. A function of space and time \(f\left({\mathbf{ r} ,t} \right)\) with sinusoidal behaviour in time can be written as:

$$\begin{aligned} f\left({\mathbf{ r} ,t} \right)=a\left(\mathbf{ r} \right)\cos \left({\omega t-\varphi \left(\mathbf{ r} \right)} \right), \end{aligned}$$
(2.58)

with a and \(\varphi \) being real functions of space called amplitude and phase, \(\omega \) being the frequency. Such a function is classically represented by its complex amplitude \(\tilde{f}\left(\mathbf{ r} \right)\) independent of time, and Eq. (2.58) is re-written in the form:

$$\begin{aligned} f({\mathbf{ r} },t)={\text{ Re}}\left\{ a({\mathbf{ r} })\exp \left({-i\omega t+i\varphi ({\mathbf{ r} })} \right)\right\} ={\text{ Re}}\left\{ a({\mathbf{ r} })\exp \left(i\varphi ({\mathbf{ r} })\right)\exp ({-i\omega t} )\right\} . \end{aligned}$$
(2.59)

The expression \(a\left(\mathbf{ r} \right)\exp \left({i\varphi \left(\mathbf{ r} \right)} \right)\) being called complex amplitude of f and denoted by \(\tilde{f}\), Eq. (2.59) can be written:

$$\begin{aligned} f({\mathbf{ r} },t)={\text{ Re}}\left\{ {\tilde{f}}({\mathbf{ r} })\exp (-i\omega t)\right\} . \end{aligned}$$
(2.60)

Thus the function f deduces from its complex amplitude \(\tilde{f}\) by multiplying by \(\exp \left({-i\omega t} \right)\) then by taking the real part of the product. It is straightforward to show that the multiplication of \(f\left({\mathbf{ r} ,t} \right)\) by a real function \(u\left(\mathbf{ r} \right)\) results in a multiplication of the complex amplitude by the same function and conversely, and that the complex amplitude of \(\partial f/\partial t\) is equal to \(-i\omega \tilde{f}\). Thus, Maxwell’s equations can be written using the complex amplitudes of the field and, for simplicity, the complex amplitudes of the fields and current are denoted using the same names and symbols as the fields and current themselves, in such a way that harmonic Maxwell equations can be written:

$$\begin{aligned} \nabla \times \mathbf{ E}&= i\omega \mathbf{ B} ,\end{aligned}$$
(2.61)
$$\begin{aligned} \nabla \times \mathbf{ H}&= \mathbf{ j} _c -i\omega \mathbf{ D} . \end{aligned}$$
(2.62)

In addition to Maxwell equations, constitutive relations allow one to express the electromagnetic properties of the materials. In contrast with Maxwell equations, they are not rigorous (except in vacuum). Assuming that a material is non-magnetic, homogeneous, isotropic and linear, these relations can be written:

$$\begin{aligned} \mathbf{ B} =\mu _0 \mathbf{ H} ,\quad \mathbf{ D} =\varepsilon _0 \varepsilon ^{\prime }\mathbf{ E} ,\quad \mathbf{ j} _\mathbf{ c} =\sigma \mathbf{ E} , \end{aligned}$$
(2.63)

with \(\mu _0 =4 \cdot \pi \cdot 10^{-7}\) being the permeability of vacuum and \(\varepsilon _0 =1/\left({36\pi 10^{9}} \right)\) being the permittivity of vacuum. The parameters \(\varepsilon ^{\prime }\) and \(\sigma \) denote the relative dielectric permittivity and the conductivity of the material respectively. Using the relations \(\mathbf{ D} =\varepsilon _0 \mathbf{ E} +\mathbf{ P} ,\quad \mathbf{ P} =\varepsilon _0 \chi \mathbf{ E} \), with \(\mathbf{ P} \) electric polarization density and \(\chi \) electric susceptibility, it turns out that \(\varepsilon ^{\prime }=1+\chi \).

Introducing the constitutive relations in Maxwell equations yields:

$$\begin{aligned} \nabla \times \mathbf{ E}&= i\omega \mu _0 \mathbf{ H} ,\end{aligned}$$
(2.64)
$$\begin{aligned} \nabla \times \mathbf{ H}&= \left({\sigma -i\omega \varepsilon _0 \varepsilon ^{\prime }} \right)\mathbf{ E} . \end{aligned}$$
(2.65)

Defining the complex permittivity:

$$\begin{aligned} \varepsilon =\varepsilon ^{\prime }+i\sigma /\left({\omega \varepsilon _0 } \right)=1+\chi +i\sigma /\left({\omega \varepsilon _0 } \right), \end{aligned}$$
(2.66)

Equation (2.65) takes a form symmetrical to Eq. (2.64):

$$\begin{aligned} \nabla \times \mathbf{ H} =-i\omega \varepsilon _0 \varepsilon \mathbf{ E} . \end{aligned}$$
(2.67)

This equation can be expressed in the form:

$$\begin{aligned} \nabla \times \mathbf{ H} =-i\omega \varepsilon _0 \mathbf{ E} +\mathbf{ j} _\mathbf{ t} ,\text{ with}\, \mathbf{ j} _\mathbf{ t} =\sigma \mathbf{ E} -i\omega \varepsilon _0 \chi \mathbf{ E} =i\omega \varepsilon _0 \left({1-\varepsilon } \right)\mathbf{ E} =\mathbf{ j} _\mathbf{ c} +\mathbf{ j} _\mathbf{ b} , \end{aligned}$$
(2.68)

with \(\mathbf{ j} _\mathbf{ t} \) total current density, including both the conduction current density \(\mathbf{ j} _\mathbf{ c} \) and the bound current density \(\mathbf{ j} _\mathbf{ b} =-i\omega \mathbf{ P} =-i\omega \varepsilon _0 \chi \mathbf{ E} \) resulting from the electric polarization. The optical index of a material is given by \(\nu =\sqrt{\varepsilon }\).

Let us notice that by taking the divergence of Eqs. (2.64) and (2.67) and using \(\nabla \cdot \left({\nabla \times \mathbf{ V} } \right)=0\), one can get the complementary couple of Maxwell equations in harmonic regime:

$$\begin{aligned} \nabla \cdot \mathbf{ H} =0,\quad \nabla \cdot \left({\varepsilon \mathbf{ E} } \right)=\nabla \cdot \left({\varepsilon ^{\prime }\mathbf{ E} } \right)=0. \end{aligned}$$
(2.69)

By combining Eqs. (2.64) and (2.67), one can obtain partial derivative equations for each field inside a homogeneous region. Introducing the value of H given by Eq. (2.64) in Eq. (2.67), we obtain:

$$\begin{aligned} \nabla \times \nabla \times \mathbf{ E} -k^{2}\mathbf{ E} =0,\quad \text{ with}\;k=\omega \sqrt{\varepsilon \varepsilon _0 \mu _0 }. \end{aligned}$$
(2.70)

In a homogeneous region, \(\nabla \cdot \left({\varepsilon \mathbf{ E} } \right)=0\) entails that \(\nabla \cdot \mathbf{ E} =0\) then using Eq. (2.69) and the vector relationship \(\nabla \times \nabla \times \mathbf{ E} =\nabla \left({\nabla \cdot \mathbf{ E} } \right)-\nabla ^{2}\mathbf{ E} \) we get:

$$\begin{aligned} \nabla \mathbf{ E} +k^{2}\mathbf{ E} =0, \end{aligned}$$
(2.71)

and, following the same lines for the magnetic field:

$$\begin{aligned} \nabla \mathbf{ H} +k^{2}\mathbf{ H} =0. \end{aligned}$$
(2.72)

It is worth noting that Maxwell equations (Eqs. (2.64) and (2.67)) are valid in the sense of distributions. In other words, they include the boundary conditions at the limit between two homogeneous materials. In order to express them in an explicit form, one can recall that the surface density of V included in \(\Delta \times \mathbf{ V} \) is equal to \(\mathbf{ n} \times \left({\mathbf{ V} _+ -\mathbf{ V} _- } \right)\), with \(\mathbf{ V} _+ -\mathbf{ V} _- \) being the jump of V across the interface in the direction of n [29]. It must be recalled that this surface term is the coefficient of a Delta distribution located on the surface. In Eqs. (2.64) and (2.67), the right-hand member contains the fields and thus they should not include distributive surface parts, thus the left-hand member satisfies the same property. We deduce that the tangential components of the electric and magnetic fields are continuous across an interface.

In the two-dimensional case, the interface is invariant by translation along the z-axis. One can distinguish the two fundamental cases of polarization: s-polarization with the electric field \(\mathbf{ E} = E\hat{\mathbf{ z} }\) and p-polarization with the magnetic field \(\mathbf{ H} =H\hat{\mathbf{ z} }\). In both cases, the boundary-value problem becomes scalar. Projecting Eqs. (2.71) and (2.72) on the z-axis, we obtain:

$$\begin{aligned} \nabla ^{2}E+k^{2}E=0\;\text{ for} \text{ s-polarized} \text{ light} \text{ and}\;\nabla ^{2}H+k^{2}H=0\;\text{ for} \text{ p-polarized} \text{ light}. \end{aligned}$$
(2.73)

Thus the electric and magnetic fields satisfy a scalar Helmholtz equation.

As regards the boundary conditions on the interface, the continuity of the tangential component of the fields entails the continuity of E for s-polarization and the continuity of H for p-polarization. Since the partial derivative equation is of the second order, a second boundary condition is needed. For s-polarization, one can express the continuity of the tangential component of the magnetic field using Eq. (2.64). Bearing in mind the vector relation \(\nabla \times \left({E\hat{\mathbf{ z} }} \right)=\nabla E\times \hat{\mathbf{ z} }\), we obtain:

$$\begin{aligned} \mathbf{ H} =\frac{1}{i\omega \mu _0 }\nabla E\times \hat{\mathbf{ z} }. \end{aligned}$$
(2.74)

Furthermore, on each side of the interface with normal vector \(\mathbf{ n} \), the continuity of the tangential component of the magnetic field entails the continuity of \(\mathbf{ n} \times \mathbf{ H} \), and from Eq. (2.74), it turns out that

$$\begin{aligned} \mathbf{ n} \times \mathbf{ H} =\frac{1}{i\omega \mu _0 }\mathbf{ n} \times \left({\nabla E\times \hat{\mathbf{ z} }} \right)=\frac{1}{i\omega \mu _0 }\nabla E\left({\mathbf{ n} \cdot \hat{\mathbf{ z} }} \right)-\hat{\mathbf{ z} }\left({\mathbf{ n} \cdot \nabla E} \right)=\frac{-1}{i\omega \mu _0 }\hat{\mathbf{ z} }\frac{\partial E}{\partial n}. \end{aligned}$$
(2.75)

It follows that the normal derivative of the electric field \(\frac{\partial E}{\partial n}\) is continuous across the interface.

For p-polarization, the electric field can be expressed from Eq. (2.67):

$$\begin{aligned} \mathbf{ E} =\frac{1}{-i\omega \varepsilon \varepsilon _0 }\nabla \times \left({H\hat{\mathbf{ z} }} \right)=\frac{1}{-i\omega \varepsilon \varepsilon _0 }\nabla H\times \hat{\mathbf{ z} }, \end{aligned}$$
(2.76)

and thus the continuity of \(\mathbf{ n} \times \mathbf{ E} \) leads to the continuity of \(\frac{1}{\varepsilon }\frac{\partial H}{\partial n}\). This second boundary condition is slightly more complicated than that obtained for s-polarization, due to the fact that, in contrast with the permeability, the permittivity is not the same on the two sides of the interface. It can be noticed that this dissymmetry disappears for magnetic materials, for which \(\frac{1}{\mu }\frac{\partial E}{\partial n}\) is continuous across the interface.

In conclusion, the boundary conditions across the interface can be written in 2D problems:

$$\begin{aligned}&E\;\text{ and}\;\partial E/\partial n\;\text{ are} \text{ continuous} \text{ for} \text{ s-polarized} \text{ light},\end{aligned}$$
(2.77)
$$\begin{aligned}&H\;\text{ and}\;\frac{1}{\varepsilon }\frac{\partial H}{\partial n}\;\text{ are} \text{ continuous} \text{ for} \text{ p-polarized} \text{ light}. \end{aligned}$$
(2.78)

The surface charge densities can be derived by taking the divergence of Eqs. (2.62) and (2.68). Bearing in mind that the surface density included in \(\Delta \cdot \mathbf{ V} \) is equal to \(\mathbf{ n} \cdot \left({\mathbf{ V} _+ -\mathbf{ V} _- } \right)\), with \(\mathbf{ V} _+ -\mathbf{ V} _- \) being the jump of V in the direction of n across the interface [29], it comes out that:

$$\begin{aligned} \rho _c&= \mathbf{ n} \cdot \left({\mathbf{ D} }_{+} -{\mathbf{ D} }_{-} \right)\end{aligned}$$
(2.79)
$$\begin{aligned} \rho _t&= \varepsilon _0 \mathbf{ n} \cdot \left({\mathbf{ E} _{+} -\mathbf{ E} _{-}} \right), \end{aligned}$$
(2.80)

with \(\rho _c \) and \(\rho _t \) being the surface densities of free and total charges.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maystre, D. (2012). Theory of Wood’s Anomalies. In: Enoch, S., Bonod, N. (eds) Plasmonics. Springer Series in Optical Sciences, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28079-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28079-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28078-8

  • Online ISBN: 978-3-642-28079-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics