Plasmonics pp 39-83 | Cite as

Theory of Wood’s Anomalies

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 167)

Abstract

Discovered by Wood in 1902, grating anomalies have fascinated specialists of optics for more than one century. Long after the first interpretation given by Rayleigh, Fano has suggested that the origin of anomalies could be found in the excitation of surface waves. This chapter describes the quantitative phenomenological theory of Wood’s anomalies developed in the 1970s, based on the interpretation given by Fano and on the macroscopic laws of electromagnetics. This theory leads to a formula giving the efficiency of gratings in the region of anomaly and predicts the phenomenon of total absorption of light by a grating.

Keywords

Propagation Constant Surface Plasmon Polariton Groove Depth Positive Imaginary Part Metallic Grating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 4, 396–402 (1902)CrossRefGoogle Scholar
  2. 2.
    Lord Rayleigh, Note on the remarkable case of diffraction spectra described by Prof. Wood. Philos. Mag. 14, 60–65 (1907)CrossRefGoogle Scholar
  3. 3.
    Lord Rayleigh, On the dynamical theory of gratings. Proc. R. Soc. Lond.79, 399–416 (1907)ADSMATHGoogle Scholar
  4. 4.
    J. Strong, Effect of evaporated films on energy distribution in grating spectra. Phys. Rev. 49, 291–296 (1936)ADSCrossRefGoogle Scholar
  5. 5.
    U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)ADSCrossRefGoogle Scholar
  6. 6.
    A. Hessel, A.A. Oliner, A new theory of Wood’s anomalies on optical gratings. Appl. Opt. 4, 1275–1297 (1965)ADSCrossRefGoogle Scholar
  7. 7.
    C.H. Palmer Jr., Parallel diffraction grating anomalies. J. Opt. Soc. Am. 42, 269–276 (1952)ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Palmer Jr., Diffraction grating anomalies, II, coarse gratings. J. Opt. Soc. Am. 46, 50–53 (1956)ADSCrossRefGoogle Scholar
  9. 9.
    J.E. Stewart, W.S. Gallaway, Diffraction anomalies in grating spectrophotometers. Appl. Opt. 1, 421–429 (1962)ADSCrossRefGoogle Scholar
  10. 10.
    D. Rudolph, G. Schmahl, Spektroscopische beugungsgitter hoher teilungsgenauigkeit erzeugt mit Hilfe von Laserlicht und photoresistschichten. Optik 30, 475–487 (1970)ADSGoogle Scholar
  11. 11.
    D. Maystre, Sur la diffraction d’une onde plane par un réseau métallique de conductivité finie. Opt. Commun. 6, 50–54 (1972)ADSCrossRefGoogle Scholar
  12. 12.
    D. Maystre, Sur la diffraction d’une onde plane électromagnétique par un réseau métallique. Opt. Commun. 8, 216–219 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    R. Petit, Etude numérique de la diffraction par un réseau. C. R. Acad. Sci. Paris 260, 4454–4457 (1965)MathSciNetGoogle Scholar
  14. 14.
    R. Petit, Contribution à l’étude de la diffraction par un réseau métallique. Rev. Opt. 45, 249–276 (1966)Google Scholar
  15. 15.
    A. Wirgin, Considérations théoriques sur la diffraction par réflexion sur des surfaces, quasiment planes, applications à la diffraction par des réseaux, C. R. Acad. Sci. Paris 259, 1486–1488 (1964)Google Scholar
  16. 16.
    A. Wirgin, Théorie électromagnétique de la diffraction d’une onde par une surface quasiment plane, Thèse d’Etat, Université de Paris, France, 1967Google Scholar
  17. 17.
    J. Pavageau, J. Bousquet, Diffraction par un réseau conducteur nouvelle méthode de résolution. Opt. Acta 17, 469–478 (1970)ADSCrossRefGoogle Scholar
  18. 18.
    R. Petit, D. Maystre, M. Nevière, Practical applications of the electromagnetic theory of gratings, Space Optics, in Proceedings of the Ninth International Congress of Optics, 1974, vol. 2, pp. 667–681Google Scholar
  19. 19.
    J.L. Uretsky, The scattering of plane waves from periodic surfaces. Ann. Phys. 33, 400–427 (1965)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    D. Maystre, R.C. Mc Phedran, Le théorème de réciprocité pour les réseaux de conductivite finie: demonstration et applications. Opt. Commun. 12, 164–167 (1974)ADSCrossRefGoogle Scholar
  21. 21.
    D. Maystre, Sur la diffraction et l’absorption par les réseaux utilisés dans l’infrarouge, le visible et l’ultraviolet; applications à la spectroscopie et au filtrage des ondes électromagnétiques, Thèse d’Etat, Université d’Aix-Marseille, 1974Google Scholar
  22. 22.
    R.C. McPhedran, M.D. Waterworth, Properties of diffraction grating anomalies. Opt. Acta 20, 533–547 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    M.C. Hutley, An experimental study of the anomalies of sinusoidal diffraction gratings. Opt. Acta 20, 607–624 (1973)CrossRefGoogle Scholar
  24. 24.
    M.C. Hutley, V.M. Bird, A detailed experimental study of the anomalies of a sinusoidal diffraction grating. Opt. Acta 20, 771–782 (1973)CrossRefGoogle Scholar
  25. 25.
    R.C. McPhedran, D. Maystre, A detailed theoretical study of the anomalies of a sinusoidal diffraction grating. Opt. Acta 21, 413–421 (1974)ADSCrossRefGoogle Scholar
  26. 26.
    R.C. McPhedran, D. Maystre, Theoretical study of the diffraction anomalies of holographic gratings. Nouv. Rev. Opt. 5, 241–248 (1974)CrossRefGoogle Scholar
  27. 27.
    R.C. McPhedran, D. Maystre, Inadequacy of perfect reflectivity model for holographic gratings even in the visible region. J. Spectrosc. Soc. Jpn. 23 (suppl. Number 1) 13–20 (1974)Google Scholar
  28. 28.
    M.C. Hutley, J.P. Verrill, R.C. McPhedran, M. Nevière, P. Vincent, Presentation and verification of a differential formulation for the diffraction by conducting gratings. Nouv. Rev. Opt. 6, 87–95 (1975)CrossRefGoogle Scholar
  29. 29.
    R. Petit (ed.), Electromagnetic Theory of Gratings. Topics in Current Physics (Springer, Berlin, 1980)Google Scholar
  30. 30.
    D. Maystre, General study of grating anomalies from electromagnetic surface modes, in Electromagnetic Surface Modes, ed. by A.D. Boardmanm (Wiley, New York, 1982)Google Scholar
  31. 31.
    R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968)ADSCrossRefGoogle Scholar
  33. 33.
    J.J. Cowan, E.T. Arakawa, Dispersion of surface plasmons in dielectric-metal coating on concave diffraction gratings. Z. Phys. 235, 97–109 (1970)ADSCrossRefGoogle Scholar
  34. 34.
    J.J. Cowan, E.T. Arakawa, Artificial polarization anomalies from holographic gratings. Opt. Commun. 21, 428–431 (1977)ADSCrossRefGoogle Scholar
  35. 35.
    H. Raether, in Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111 (Springer, New York, 1988)Google Scholar
  36. 36.
    I. Pockrand, Reflection of light from periodically corrugated silver films near the plasma frequency. Phys. Lett. 49A, 259–260 (1974)ADSGoogle Scholar
  37. 37.
    I. Pockrand, Coupling of surface plasma oscillations in thin periodically corrugated silver films. Opt. Commun. 13, 311–313 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    H. Raether, On the influence of roughness on the optical properties of surfaces: plasma resonance emission and the plasmon dispersion relation. Thin Solid Films 28, 119–124 (1975)ADSCrossRefGoogle Scholar
  39. 39.
    R. Orlowski, H. Raether, The total reflection of light at smooth and rough silver films and surface plasmons. Surf. Sci. 54, 303–308 (1975)CrossRefGoogle Scholar
  40. 40.
    I. Pockrand, H. Raether, Surface plasma-oscillations in silver films with wavy surface profiles—quantitative experimental study. Opt. Commun. 18, 395–399 (1976)ADSCrossRefGoogle Scholar
  41. 41.
    I. Pockrand, Resonance anomalies in light intensity reflected at silver gratings with dielectric coatings. J. Phys. D Appl. Phys. 9, 2423–2432 (1976)ADSCrossRefGoogle Scholar
  42. 42.
    E. Kröger, E. Kretschmann, Surface plasmon and polariton dispersion at rough boundaries. Phys. Status Solid. B 76, 515–523 (1976)ADSCrossRefGoogle Scholar
  43. 43.
    I. Pockrand, H. Raether, Surface plasma oscillations at sinusoidal silver surfaces. Appl. Opt. 16, 1784–1786 (1977)ADSCrossRefGoogle Scholar
  44. 44.
    C.J. Powell, J.B. Swan, Origin of the characteristic electron energy losses in aluminium. Phys. Rev. 115, 869–875 (1959)ADSCrossRefGoogle Scholar
  45. 45.
    D. Maystre, Rigorous vector theories of diffraction gratings, in Progress in Optics, vol. 21, ed. by E. Wolf (North-Holland, Amsterdam, 1984), pp. 1–67Google Scholar
  46. 46.
    E. Popov, L. Tsonev, D. Maystre, Losses of plasmon surface wave on metallic grating. J. Mod. Opt. 37, 379–387 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    E.C. Titchmarsh, The Theory of Functions, 2nd edn. (Oxford University Press, London, 1939)Google Scholar
  48. 48.
    P.M. Morse, H. Feshbach, Derivatives of analytic functions, in Methods of Theoretical Physics, Taylor and Laurent Series, Part I (McGraw-Hill, New York, 1953), pp. 374–398Google Scholar
  49. 49.
    D. Maystre, R. Petit, Brewster incidence for metallic gratings. Opt. Commun. 17, 196–200 (1976)ADSCrossRefGoogle Scholar
  50. 50.
    M.C. Hutley, D. Maystre, The total absorption of light by a diffraction grating. Opt. Commun. 19, 431–436 (1976)ADSCrossRefGoogle Scholar
  51. 51.
    J. Le Perchec, P. Quemerais, A. Barbara, T. Lopez-Rios, Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. Phys. Rev. Lett. 100, 066408 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    D.C. Cullen, C.R. Lowe, A direct surface plasmon-polariton immunosensor: preliminary investigation of the non-specific adsorption of serum components to the sensor surface. Sens. Actuators B 1, 576–579 (1990)CrossRefGoogle Scholar
  53. 53.
    M. Nevière, R. Reinisch, Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering. Phys. Rev. B 26, 5403–5408 (1982)ADSCrossRefGoogle Scholar
  54. 54.
    R. Reinisch, M. Nevière, Electromagnetic theory of diffraction in nonlinear optics and surface enhanced nonlinear optical effects. Phys. Rev. 28, 1870–1885 (1983)MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    G.H. Derrick, R.C. McPhedran, D. Maystre, M. Nevière, Crossed gratings: a theory and its applications. Appl. Phys. 18, 39–52 (1979)ADSCrossRefGoogle Scholar
  56. 56.
    T.V. Teperik, F.J. García De Abajo, A.G. Borisov, M. Abdelsalam, P.N. Bartlett, Y. Sugawara, J.J. Baumberg, Omnidirectional absorption in nanostructured metal surface. Nat. Photonics 2, 299–301 (2008)CrossRefGoogle Scholar
  57. 57.
    E.L. Wood, J.R. Sambles, N.P. Cotter, S.C. Kitson, Diffraction grating characterization using multiplewavelength excitation of surface-plasmon polaritons. J. Mod. Opt. 42, 1343–1349 (1995)ADSCrossRefGoogle Scholar
  58. 58.
    F. Pincemin, J.-J. Greffet, J.-J. Greffet, Propagation and localization of a surface plasmon polariton on a finite grating. J. Opt. Soc. Am. B 13, 1499–1509 (1996)ADSCrossRefGoogle Scholar
  59. 59.
    W.L. Barnes, S.C. Kitson, T.W. Preist, J.R. Sambles, Photonic surfaces for surface-plasmon polaritons. J. Opt. Soc. Am. A 14, 1654–1661 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    T. López-Rios, D. Mendoza, F.J. Garcia-Vidal, J. Sánchez-Dehesa, B. Pannetier, Surface shape resonances in lamellar metallic gratings. Phys. Rev. Lett. 81, 665–668 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    F.J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, B. Pannetier, Localized surface plasmons in lamellar metallic gratings. J. Lightwave Technol. 17, 2191–2195 (1999)ADSCrossRefGoogle Scholar
  62. 62.
    W.-C. Tan, T.W. Preist, J.R. Sambles, N.P. Wanstall, Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings. Phys. Rev. B 59, 12661–12666 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    E.A. Smith, R.M. Corn, Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl. Spectrosc. 57, 320A–332A (2003)ADSCrossRefGoogle Scholar
  64. 64.
    R. Hooper, J.R. Sambles, Surface plasmon polaritons on narrow-ridged short-pitch metal gratings in the conical mount. J. Opt. Soc. Am. 20, 836–843 (2003)ADSCrossRefGoogle Scholar
  65. 65.
    S.F. Cheng, L.K. Chau, Colloidal gold modified optical fiber for chemical and biochemical sensing. Anal. Chem. 75, 16–21 (2003)CrossRefGoogle Scholar
  66. 66.
    E. Hutter, J. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004)CrossRefGoogle Scholar
  67. 67.
    S. Collin, F. Pardo, R. Teissier, J.L. Pelouard, Efficient light absorption in metal-semiconductor-metal nanostructures. Appl. Phys. Lett. 85, 194–196 (2004)ADSCrossRefGoogle Scholar
  68. 68.
    K. Aslan, J.R. Lakowicz, C. Geddes, Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538–544 (2005)CrossRefGoogle Scholar
  69. 69.
    J.N. Gollub, D.R. Smith, D.C. Vier, T. Perram, J.J. Mock, Phys. Rev. B 71, 195402 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    L.K. Chau, Y.F. Lin, S.F. Cheng, T.J. Lin, Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sens. Actuators B 113, 100–105 (2006)CrossRefGoogle Scholar
  71. 71.
    E. Popov, N. Bonod, S. Enoch, Non-Bloch plasmonic stop-band in real-metal gratings. Opt. Express 10, 6241–6250 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    E. Popov, N. Bonod, S. Enoch, Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings. Opt. Express 15, 4224–4237 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    N. Bonod, E. Popov, L. Li, B. Chernov, Unidirectional excitation of surface plasmon by slanted grating. Opt. Express 18, 11427–11432 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    M. Guizar-Sicairos, J.C. Gutierrez-Vega, Propagation of Helmholtz-Gauss beams in absorbing and gain media. J. Opt. Soc. Am. 23, 1994–2001 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    E.G. Loewen, M. Nevière, Dielectric coated gratings—curious property. Appl. Opt. 16, 3009–3011 (1977)ADSCrossRefGoogle Scholar
  76. 76.
    D. Maystre, M. Nevière, P. Vincent, General theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves. Optica Acta 25, 905–915 (1978)ADSCrossRefGoogle Scholar
  77. 77.
    M. Nevière, D. Maystre, G.H. Derrick, R.C. McPhedran, M.C. Hutley, On the total absorption of unpolarized monochromatic light, in Proceedings of I.C.O.XI Conference, Madrid, Spain, 1978, pp. 609–612Google Scholar
  78. 78.
    E. Popov, D. Maystre, R.C. McPhedran, M. Nevière, M.C. Hutley, G.H. Derrick, Total absorption of unpolarized light by crossed gratings. Opt. Express 16, 6146–6155 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    N. Bonod, G. Tayeb, D. Maystre, S. Enoch, E. Popov, Total absorption of light by lamellar metallic gratings. Opt. Express 16, 15431–15438 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut Fresnel, CNRSUniversité d’Aix Marseille, Ecole Centrale Marseille MarseilleFrance

Personalised recommendations