Heuristics for the Maximum 2-layer RAC Subgraph Problem

  • Emilio Di Giacomo
  • Walter Didimo
  • Luca Grilli
  • Giuseppe Liotta
  • Salvatore A. Romeo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7157)

Abstract

This paper studies 2-layer RAC drawings of bipartite graphs. The contribution is as follows: (i) We prove that the problem of computing the maximum 2-layer RAC subgraph is NP-hard even when the vertex ordering on one layer is fixed; this extends a previous NP-hardness result that allows the vertices to be permuted on each layer. (ii) We describe a 3-approximation algorithm for the maximum 2-layer RAC subgraph problem when the vertex ordering on each layer is not fixed, and a heuristic for the case that the vertex ordering on one of the layers is fixed. (iii) We present an experimental study that evaluates the effectiveness of the proposed approaches.

Keywords

Bipartite Graph Approximation Factor Input Graph Span Subgraph Uniform Probability Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. JGAA 15(1), 53–78 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that Admit Right Angle Crossing Drawings. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 135–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-Layer Right Angle Crossing Drawings. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 156–169. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theoretical Computer Science 412(39), 5156–5166 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dujmović, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. In: Proc. CATS 2010, pp. 19–24. ACS (2010)Google Scholar
  6. 6.
    Eades, P., McKay, B., Wormald, N.: On an edge crossing problem. In: Proc. of 9th Australian Computer Science Conference, pp. 327–334 (1986)Google Scholar
  7. 7.
    Eades, P., Kelly, D.: Heuristics for drawing 2-layered networks. Ars Combin. 21, 89–98 (1986)MathSciNetMATHGoogle Scholar
  8. 8.
    Eades, P., Whitesides, S.H.: Drawing graphs in two layers. Theoretical Computer Science 131(2), 361–374 (1994)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. J. Graph Algorithms Appl. 1 (1997)Google Scholar
  11. 11.
    van Kreveld, M.: The Quality Ratio of RAC Drawings and Planar Drawings of Planar Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 371–376. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs. SIAM J. on Optimization 11(4), 1065–1080 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. on Syst., Man and Cyber. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Luca Grilli
    • 1
  • Giuseppe Liotta
    • 1
  • Salvatore A. Romeo
    • 1
  1. 1.Università di PerugiaItaly

Personalised recommendations