Advertisement

Reoptimization of the Maximum Weighted Pk-Free Subgraph Problem under Vertex Insertion

  • Nicolas Boria
  • Jérôme Monnot
  • Vangelis Th. Paschos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7157)

Abstract

The reoptimization issue studied in this paper can be described as follows: given an instance I of some problem Π, an optimal solution OPT for Π in I and an instance I′ resulting from a local perturbation of I that consists of insertions or removals of a small number of data, we wish to use OPT in order to solve Π in I′, either optimally or by guaranteeing an approximation ratio better than that guaranteed by an ex nihilo computation and with running time better than that needed for such a computation. In this setting we study the weighted version of max weighted P k -free subgraph. We then show, how the technique we use allows us to handle also bin packing.

Keywords

Approximation Ratio Steiner Tree Initial Graph Subgraph Problem Vertex Insertion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archetti, C., Bertazzi, L., Speranza, M.: Reoptimizing the traveling salesman problem. Networks 42(3), 154–159 (2003), http://dblp.uni-trier.de/db/journals/networks/networks42.html#ArchettiBS03 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Archetti, C., Bertazzi, L., Speranza, M.: Reoptimizing the 0-1 knapsack problem. Discrete Applied Mathematics 158(17), 1879–1887 (2010), http://dblp.uni-trier.de/db/journals/dam/dam158.html#ArchettiBS10 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ausiello, G., Bonifaci, V., Escoffier, B.: Complexity and approximation in reoptimization. In: CiE 2007: Logic and Computation and Logic in the Real World (2007)Google Scholar
  4. 4.
    Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.: Reoptimization of Minimum and Maximum Traveling Salesman’s Tours. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006), http://dblp.uni-trier.de/db/conf/swat/swat2006.html#AusielloEMP06 CrossRefGoogle Scholar
  5. 5.
    Bilò, D., Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Widmayer, P., Zych, A.: Reoptimization of Steiner Trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 258–269. Springer, Heidelberg (2008), http://dblp.uni-trier.de/db/conf/swat/swat2008.html#BiloBHKMWZ08 CrossRefGoogle Scholar
  6. 6.
    Bilò, D., Böckenhauer, H.-J., Komm, D., Královič, R., Mömke, T., Seibert, S., Zych, A.: Reoptimization of the Shortest Common Superstring Problem. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 78–91. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bilò, D., Widmayer, P., Zych, A.: Reoptimization of Weighted Graph and Covering Problems. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 201–213. Springer, Heidelberg (2009), http://dblp.uni-trier.de/db/conf/waoa/waoa2008.html#BiloWZ08 CrossRefGoogle Scholar
  8. 8.
    Böckenhauer, H.J., Forlizzi, L., Hromkovic, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: On the approximability of tsp on local modifications of optimally solved instances. Algorithmic Operations Research 2(2), 83–93 (2007), http://dblp.uni-trier.de/db/journals/aor/aor2.html#BockenhauerFHKKPW07 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Böckenhauer, H.J., Hromkovic, J., Královic, R., Mömke, T., Rossmanith, P.: Reoptimization of steiner trees: Changing the terminal set. Theor. Comput. Sci. 410(36), 3428–3435 (2009), http://dblp.uni-trier.de/db/journals/tcs/tcs410.html#BockenhauerHKMR09 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the Hardness of Reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidelberg (2008), http://dblp.uni-trier.de/db/conf/sofsem/sofsem2008.html#BockenhauerHMW08 CrossRefGoogle Scholar
  11. 11.
    Böckenhauer, H.-J., Hromkovič, J., Sprock, A.: Knowing All Optimal Solutions Does Not Help for TSP Reoptimization. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 7–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Böckenhauer, H.J., Komm, D.: Reoptimization of the metric deadline TSP. J. Discrete Algorithms 8(1), 87–100 (2010), http://dblp.uni-trier.de/db/journals/jda/jda8.html#BockenhauerK10 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Boria, N., Monnot, J., Paschos, V.T.: Reoptimization of maximum weight induced hereditary subgraph problems. Cahier du LAMSADE 311, LAMSADE, University Paris-Dauphine (Juin 2001)Google Scholar
  14. 14.
    Boria, N., Paschos, V.: Fast reoptimization for the minimum spanning tree problem. Journal of Discrete Algorithms 8(3), 296–310 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Escoffier, B., Milanic, M., Paschos, V.: Simple and fast reoptimizations for the steiner tree problem. Algorithmic Operations Research 4(2), 86–94 (2009), http://dblp.uni-trier.de/db/journals/aor/aor4.html#EscoffierMP09 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lund, C., Yannakakis, M.: The Approximation of Maximum Subgraph Problems. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 40–51. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  17. 17.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proc. STOC 2006, pp. 681–690 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicolas Boria
    • 1
  • Jérôme Monnot
    • 1
  • Vangelis Th. Paschos
    • 1
    • 2
  1. 1.LAMSADE, CNRS UMR 7243 and Université Paris-DauphineFrance
  2. 2.Institut Universitaire de FranceFrance

Personalised recommendations